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1 Introduction

This paper addresses the first order approximation of counterfactual price effects in oligopoly

models. First order approximation may best be introduced in its relation to simulation, a

methodology that is a staple in industrial organization and other fields of economics. The

accuracy of simulation requires functional forms that characterize reasonably how economic

relationships change away from the observed equilibria. First order approximation, by con-

trast, allows the researcher to remain largely agnostic about functional forms. Instead,

the second-order properties of the relevant functions, in the neighborhood of the observed

equilibria, are gleaned from pass-through and subsequently used to inform counterfactual

predictions. The theoretical literature has long recognized that pass-through is connected to

demand curvature (e.g., Bulow and Pfleiderer (1983)), and this has garnered more attention

recently (e.g., Fabinger and Weyl (2012), Weyl and Fabinger (2013)). However, there is little

prior research that explores the theoretical properties of first order approximation and none

that investigates empirically the accuracy of its counterfactual predictions.

Our starting point is the theoretical work of Jaffe and Weyl (2013), which derives first

order approximation in the context of mergers between horizontally differentiated competi-

tors. We first extend the theory to any counterfactual scenario involving perturbations to

firms’ first order conditions, and focus especially on vertical shifts in the marginal cost and

demand functions faced by firms. Such scenarios include, but are not limited to, pollution

permits trading programs, production or sales taxes, exchange rate fluctuations, and some

forms of innovation. Each involves the same fundamental issue: the extent to which firms

transmit cost or demand shocks to consumers in the form of price adjustments. Predom-

inately, papers in industrial organization use simulation to examine such scenarios – first

order approximation provides an alternative methodology that potentially is more robust.

We explain how the primitives required for implementation of first order approximation can

be obtained from pass-through and show how the formulas can be manipulated to best make

use of the available information.

We then present additional theoretical results for counterfactual scenarios involving

vertical shifts in firms’ marginal cost functions. First, we show that in such settings first

order approximation simplifies and can be implemented by pre-multiplying the cost changes

by the cost pass-through matrix. This result is both simple and powerful. The immediate

implication is that reduced-form econometric estimates of pass-through can be used to make

meaningful out-of-sample predictions, alleviating in some cases the need for structural esti-
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mation.1 Second, we prove that first order approximation is exact in models characterized

by constant pass-through, such as those that feature a class of demand functions identified

in Bulow and Pfleiderer (1983).2 Third, we show that the above results extend to scenarios

involving “industry-wide” cost shocks that affect all firms equally. Knowledge of how firms

respond to industry-wide shifts in the observed equilibria, either collectively or individu-

ally, is sufficient to support predictions based on first order approximation that are fully

consistent with oligopoly interactions. This latter result is relevant to a large and growing

literature in macroeconomics and international trade.

These theoretical results in hand, we use Monte Carlo experiments to evaluate the

accuracy of first order approximation, both absolutely and relative to simulation. These

experiments complement the theoretical results, which demonstrate the precision of approx-

imation only for counter-factual scenarios involving arbitrarily small perturbations and in

certain special cases, such as when firms have quadratic profit functions or for vertical cost

and demand shifts with constant pass-through demand systems. The Monte Carlo exper-

iments allow us to evaluate tractably the quality of counter-factual predictions in those

settings that are most relevant for researchers and policy-makers.

We first parameterize the logit, almost ideal, linear and log-linear demand systems to

reproduce each of 3,000 randomly drawn sets of data on market shares and margins. The

data generating process is designed to cover a wide range of firm and industry conditions.

Importantly, we calibrate the demand systems such that the demand elasticities are identical

in each for a given draw of data. Marked differences in demand curvature and pass-through

exist though and lead to differences in counterfactual predictions. We impose a number

of counterfactual changes on each parameterized system, including (i) a merger between

two firms; (ii) a firm-specific vertical shift in the marginal cost of one firm; and (iii) an

industry-wide vertical shift in the marginal cost functions of all firms.3

1The result can be interpreted as provided external validity to reduced-form pass-through estimates
because, provided consistent pass-through estimates are obtained (i.e., internal validity is achieved), the
econometrician can extrapolate beyond the range of the data to model counter-factual scenarios based on
the logic of first order approximation.

2Demand must induce firms to employ constant pass-through rates. Weyl and Fabinger (2013) provide
versions of this result for the case of single-product firms. The applicability of the result in settings with
multi-product firms is limited as there the only demand system with constant pass-through that also satisfies
Slutsky symmetry is linear.

3The generated data confirm the Monte Carlo results of Crooke, Froeb, Tschantz, and Werden (1999)
regarding the sensitivity of merger simulation to functional form assumptions. Our work thus has relevance
to a burgeoning literature that compare merger simulation to direct ex post estimates of actual price effects
(e.g., Nevo (2000); Peters (2006); Weinberg (2011); Weinberg and Hosken (2013); Bjornerstedt and Ver-
boven (2012)), in that we highlight the potential importance of demand curvature assumptions in creating
discrepancies between merger simulations and realized price effects.
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We then compare the predictions of first order approximation, calculated using infor-

mation on curvature and pass-through in the initial equilibrium, to the true price effect. We

also compare first order approximation to the predictions of misspecified simulation, i.e.,

simulation conducted with correct elasticities but incorrect assumptions on the functional

forms. Of course, simulation that is conducted with correct functional form obtains the true

price effect. This empirical design yields results that are relevant to researchers who have

estimated accurately the relevant elasticities, as they exist in the observed equilibria, but

who have imperfect knowledge about how the elasticities change away from those equilibria.

In our data, first order approximation outperforms misspecified simulation systemat-

ically and substantially. Consider first the case of mergers. We find that the prediction

errors that arise with first order approximation are tightly distributed around the true price

effects, while with misspecified simulation the empirical distributions of prediction error ex-

hibit bias and fatter tails. The median absolute prediction error that arises with first order

approximation typically is an order of magnitude less than that of misspecified simulation,

and the absolute prediction error with approximation is smaller than that of misspecified

simulation in 91.7% of the merger scenarios considered. Further, when price effects are

evaluated against a specific threshold (e.g., a 10% change), prediction based on first order

approximation exhibits both few false positives and few false negatives, while prediction

based on misspecified simulation typically exhibits either many false positives or many false

negatives.

First order approximation is even more accurate for the counterfactual scenarios in-

volving vertical shifts to the marginal cost functions. There our theoretical results establish

exactness for the cases of linear and log-linear demand, for which optimal pass-through rates

are constant. In the Monte Carlo experiments, we find that prediction error often is within

rounding error of zero with logit or almost ideal demand, for which pass-through is not

constant. First order approximation has smaller absolute prediction error than misspecified

simulation in 98.4% of the firm-specific cost shock scenarios considered and in 99.8% of the

industry-wide cost shock scenarios.

Finally, we use the Monte Carlo experiments to characterize the accuracy of two ver-

sions of first order approximation for mergers that we believe should be attractive to antitrust

practitioners. These predictors build on the Farrell and Shapiro (2010a) logic that mergers

create opportunity costs (“upward pricing pressure”) because each merging firm, when mak-

ing a sale, forgoes with some probability a sale by the other merging firm. The first predictor

is calculated by multiplying upward pricing pressure by cost pass-through. We find that this

predictor is substantially more accurate than misspecified merger simulation – for instance,
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it has smaller absolute prediction error than misspecified simulation in 89.6% of the mergers

considered. The second predictor is calculated by multiplying upward pricing pressure by

the identity matrix. We find that even this outperforms misspecified merger simulation in

fully 77.9% of the mergers considered. These results indicate that upward pricing pressure is

substantially more useful than initially conceptualized (e.g., see Schmalensee (2009); Carlton

(2010); Farrell and Shapiro (2010a)), and underscores the value of the first order approach

to merger analysis pioneered in Werden (1996) and advanced in Jaffe and Weyl (2013).

Most generally, our research has bearing on how economists in industrial organization

approach making counterfactual predictions. We refer readers to Nevo and Whinston (2010)

for an overview of simulation and to Werden and Froeb (2008) for an informed discussion of

merger simulation specifically. First order approximation joins a recent literature exploring

ways to construct counterfactuals that rely less on functional form assumptions. For instance,

recent contributions demonstrate the random coefficients logit model is non-parametrically

identified (Bajari, Fox, Kim, and Ryan (2012), Berry, Gandhi, and Haile (2013)). Provided

the model is estimated appropriately, data from the observed equilibria can be allowed to

determine the curvature of the relevant functional forms and inform counterfactual predic-

tions.

This paper is also closely related to recent theoretical research studying the various uses

of cost pass-through. Cost pass-through, due to its connection with demand curvature, can

be used in a number of ways to inform modeling choices, estimation, and the generation of

counterfactuals (e.g., Fabinger and Weyl (2012)). First order approximation is one option:

our results show that, given knowledge of the demand elasticities, cost pass-through can

be used to make robust counterfactual predictions. Miller, Remer, and Sheu (2013) show

that cost pass-through also can be used to select an appropriate demand model for use in

counterfactual simulation exercises and inform the demand elasticities given such a model.

These findings leverage the observation that cost pass-through is connected theoretically to

strategic complementarity, in the sense of Bulow, Geanakoplos, and Klemperer (1985), which

in turn is connected to the degree to which consumers view products as substitutes.

Our results have special relevance to the substantial literature in macroeconomics and

international trade that estimates the pass-through of industry-wide cost shocks by way

of reduced-form regression. In particular, we show how the obtained pass-through rates

enable out-of-sample predictions that are fully consistent with oligopoly theory – conveying

a previously unrecognized sense of external validity. Those predictions are both simpler

and likely more accurate than most simulation methodologies. While a full review of the

literature is beyond the scope of our paper, we note that among the topics investigated are
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the sources of incomplete cost pass-through (e.g., Nakamura and Zerom (2010), Golberg and

Hellerstein (2013)), the retail and wholesale components of cost pass-through (e.g., Nakamura

(2008), Gopinath, Gourinchas, Hsieh, and Li (2011)) and how cost-pass through is affected

by horizontal market structures (e.g., Atkeson and Burstein (2008), Berman, Martin, and

Mayer (2011), Auer and Schoenle (2012), Hong and Li (2013)) and vertical market structures

(e.g., Hellerstein and Villas-Boas (2010), Neiman (2010), Hong and Li (2013)).

The paper proceeds as follows. Section 2 introduces the theoretical underpinnings of

first order approximation as a methodology for making counterfactual predictions. Special

attention is given to counterfactual scenarios involving mergers and vertical shifts to firms’

cost and demand functions. That section includes the new theoretical results and sketches

the simplifications that could make first order approximation more palatable for antitrust

practitioners. Section 3 pivots to the Monte Carlo experiments. There the data generating

process is detailed, and summary statistics are presented on the pass-through that arises

with logit, almost ideal, linear and log-linear demand. The sensitivity of simulation to func-

tional form assumption is also explored. Section 4 compares the accuracy of first order

approximation both against true price effects and vis-à-vis misspecified simulation. It ad-

dresses, in turn, counterfactual scenarios involving mergers, scenarios involving firm-specific

and industry-wide cost shocks, and the simplified versions of approximation for antitrust

practitioners. We conclude in Section 5 with a discussion of first order approximation and

an overview of additional research opportunities.

2 The Theory of First Order Approximation

2.1 Definitions and model

We assume that there is a set of firms engaging in Bertrand-Nash competition, each facing a

well-behaved, twice-differentiable demand function. The mathematics generalize to alterna-

tive equilibrium concepts if there is a single strategic variable per product (Jaffe and Weyl

2013) but we focus on the Bertrand-Nash case to ease exposition. Let each firm i produce

some subset of the products available to consumers. The profit function of firm i is

πi = P T
i Qi(P )− Ci(Qi(P )),

where Pi is a vector of firm i’s prices, Qi is a vector of firm i’s unit sales, P is a vector

containing the prices of every product, and Ci is the cost function. The superscript T
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denotes the vector/matrix transpose.

The first order conditions that characterize this firm’s profit-maximizing prices can be

expressed

fi(P ) ≡ −

[
∂Qi(P )

∂Pi

T
]−1

Qi(P )− (Pi −MCi(Qi(P ))) = 0, (1)

where MCi = ∂Ci/∂Qi is a vector of firm i’s marginal costs. This formulation is often

convenient in the context of first order approximation, as we explain below, because marginal

costs enter quasi-linearly with a coefficient of one. The first order conditions also can be

written as

falti (P ) ≡ Qi(P ) +

[
∂Qi(P )

∂Pi

T
]

(Pi −MCi) = 0, (2)

which is simply a rearrangement of equation (1) with quantity sold entering quasi-linearly

with a coefficient of one. This alternative formulation can be convenient in special cases.

Consider now an event – policy change or otherwise – that affects firms’ profits through

the cost function, the consumer demand schedule, or both. The first order conditions can be

modified to account for resulting changes in firm incentives. Given the definition of fi(P ) in

equation (1), these “post-policy” first order conditions can be expressed

hi(P ) ≡ fi(P ) + gi(P ) = 0, (3)

where gi(P ) adjusts the pre-policy conditions fi(P ) to account for the changes in incentives.

Similarly, the alternative post-policy conditions are given by halti (P ) ≡ falti (P )+galti (P ) = 0.

First order approximation uses information on the pre-policy equilibrium expressed

through the post-policy first order conditions just derived. Jaffe and Weyl (2013) provide

the following theorem, which generalizes beyond their context of horizontal mergers:

Theorem 1: Let P 0 be the pre-policy equilibrium price vector and let h(P ) be the post-policy

first order conditions. If h(P ) is invertible then the price changes due to the policy, to a first

approximation, are given by the vector

∆P = −
(
∂h(P )

∂P

)−1
∣∣∣∣∣
P=P 0

h(P 0).

Proof: Let h(P ) = f(P )+g(P ). Then h(P 0) = g(P 0) ≡ r because f(P 0) = 0. Let P 1 denote

the prices the characterize the post-policy equilibrium so that h(P 1) = 0. If h is invertible
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then

P 1 − P 0 = h−1(0)− h−1(r) =

(
∂h−1

∂h
(r)

)
(0− r) +O(‖r‖2)

≈ −
(
∂f

∂P
(P 0) +

∂g

∂P
(P 0)

)−1

g(P 0)

The formula provided in Theorem 1 approximates how firms transmit marginal cost

and demand shocks to consumers in the form of price adjustments; if one replaces h(P )

with halt(P ) the formula applies to the alternative first order conditions.4 Note that the

shocks are represented in the formula by the vector h(P 0), which is equivalent to g(P 0)

since by construction f(P 0) = 0. How these shocks are predicted to manifest as price

changes is determined by the opposite inverse Jacobian of h(P ) with respect to P , evaluated

at pre-policy prices, which we refer to as the policy pass-through matrix. As can be seen

from equations (1) and (3), the policy pass-through matrix incorporates the first and second

derivatives of the demand function. The matrix is closely related to the cost pass-through

matrix that arises in the initial equilibrium, as we develop in Section 2.3.

First order approximation is exact when profit functions are quadratic, as they are with

linear demand and constant marginal costs (Jaffe and Weyl (2013)). We extend in Section

2.4 the conditions under which exactness is obtained to counterfactual scenarios involving

vertical marginal cost shifts and constant pass-through systems.

To build intuition on Theorem 1, we demonstrate first order approximation graphically.

Figure 1 plots a hypothetical function h(P ) for a single-product monopolist. The intersection

of h(P ) with the horizontal axis is the optimal post-policy price for the monopolist. The

dashed line is tangent to h(P ) at the pre-policy price. A first order approximation to the

optimal post-policy price is obtained by projecting this tangent to its point of intersection

with the horizontal axis. This is equivalent to applying a single step of the Newton-Raphson

method for finding the roots of a function. In this example, the convexity of h(P ) causes

first order approximation to understate the optimal post-policy price of the monopolist. The

convexity or concavity of h(P ) depends on higher-order properties of demand, meaning that

in general, first order approximation could understate or overstate the price adjustments.

Improved predictions could be obtained either by incorporating information on the third-

order properties of demand,5 yielding a second order approximation, or by applying multiple

4Indeed, first order approximation was initially proposed for merger evaluation in Froeb, Tschantz, and
Werden (2005), based on the alternative first order conditions of equation (2).

5Equivalently, one could incorporate information on how pass-through rates change with level of costs.
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Figure 1: Graphical Illustration of First Order Approximation

steps of the Newton-Raphson method. Both prospects require information that is unavailable

except in rare instances.

2.2 Policy changes and first order conditions

In order to provide some concrete examples of first order approximation, we examine three

distinct cases: (i) policy changes that involve vertical shifts in the marginal cost schedules,

(ii) policy changes that result in vertical shifts of the demand functions, and (iii) horizontal

mergers between firms selling substitute products as in Jaffe and Weyl (2013). The first two

cases allow for simple cost- and demand-side shocks, respectively, while the third incorporates

interactions from both channels simultaneously.

The g function takes on a different form for each of these three policy types. For

policies that vertically shift the marginal cost function, the g function is given by

gi(P ) = ∆MCi(Qi(P )) ≡MC1
i (Qi(P ))−MCi(Qi(P )), (4)

where MC1 is the post-policy marginal cost function. The pre- and post-policy first order
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conditions are equivalent aside from the substitution of MC1 for MC. The tractability of

this expression arises from the formulation of the fi(P ), where costs enter quasi-linearly

with a coefficient of one. For policies that vertically shift the demand function, holding fixed

demand slope and curvature), the g function takes the form

gi(P ) = −

[
∂Qi(P )

∂Pi

T
]−1

∆Qi(P ) ≡ −

[
∂Qi(P )

∂Pi

T
]−1

(Q1
i (P )−Qi(P )), (5)

which is the size of the vertical shift in the inverse demand curve that results from the policy.

Again the pre- and post-policy first order conditions are equivalent aside from the substi-

tution of Q1
i (P ) for Qi(P ). In the special case when the alternative first order conditions

halti (P ) are being used, expression (5) reduces to galti (P ) = ∆Qi(P ). The main benefit of the

alternative first order conditions is that they simplify in these instances.

The g function that results from a horizontal merger is more complicated. A merger

between substitutes can potentially have effects both on demand and on costs. Consider a

merger between firms j and k. The g function that results is

gj(P ) = −
(
∂Qj(P )T

∂Pj

)−1(
∂Qk(P )T

∂Pj

)
︸ ︷︷ ︸

Matrix of Diversion from j to k

(Pk −MC1
k)︸ ︷︷ ︸

Markup of k

− (MCj −MC1
j )︸ ︷︷ ︸

Cost Efficiencies

. (6)

The form of gk(P ) is analogous and gi(P ) = 0 for i 6= j, k. One can think of the first

term in equation (6) as measuring a new opportunity cost that the firm internalizes after

the merger. Each firm in the merger, when making a sale, forgoes with some probability a

sale by the other firm. That is, when adjusting its prices, the merging firm can drive sales

towards or away from its merging partner. The diversion matrix represents the fraction of

sales lost by firm j’s products that shift to firm k’s products due to an increase in firm j’s

prices. When multiplied by the vector of firm k’s markups, this yields the value of diverted

sales; the more these sales are worth, the greater incentive a firm has to raise price following

a merger. In turn, these incentives are counterbalanced by any marginal cost efficiencies

created by the merger, which are captured in the second term of equation (6). Farrell and

Shapiro (2010a) refer to gj(P
0) and gk(P

0) as the net upward pricing pressure created by the

merger. The interpretation of upward pricing pressure as an opportunity cost is supported

by the formulation of the first order conditions in equations (1) and (3), as both gi(P ) and

marginal costs enter the same way.6

6For an extended discussion on these issues, see for example Werden (1996); Weyl and Fabinger (2013);
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2.3 Pass-through and identification

The formula for first order approximation requires as an input the Jacobian of h(P ). This in-

corporates the first and second derivatives of the demand function (equivalently, the demand

elasticities and curvatures). We discuss in this section how pass-through can be exploited to

obtain the second derivatives of demand, given the first derivatives. Let ρc(P 0) be the initial

cost pass-through matrix. Each element ρcij(P
0) is the derivative of product i’s equilibrium

price with respect to product j’s cost, evaluated at equilibrium prices. The off-diagonal

elements are positive if and only if prices are strategic complements.7 Jaffe and Weyl (2013)

show that

ρc(P ) ≡ ∂P

∂t
= −

(
∂f(P )

∂P

)−1

, (7)

where t is a vector of taxes that perturbs marginal costs. The matrices that appear above

are of dimensionality N × N , where N is the number of products. Thus, this expression

provides N2 equations, each of which matches an element of the cost pass-through matrix

to a nonlinear function of the first and second derivatives of demand.

These equations can be used to recover the second derivatives, given certain identifying

assumptions and knowledge of the first derivatives and cost pass-through. Assuming that

demand satisfies Slutsky symmetry is sufficient for identification in the case of duopoly.8 In

other instances, second derivatives of the form ∂2Qi/(∂Pj∂Pk), for i 6= j, i 6= k and j 6= k, are

not identified from equation (7) even with Slutsky symmetry, without further restrictions.

These second derivatives are plausibly small, however, and it may be reasonable to normalize

Farrell and Shapiro (2010a); Farrell and Shapiro (2010b); Kominers and Shapiro (2010); Jaffe and Weyl
(2013); and Willig (2011). The 2010 Horizontal Merger Guidelines endorse upward pricing pressure as
informative of the likely competitive effects of mergers. See Horizontal Merger Guidelines

∮
6.1:

“The value of sales diverted to a product is equal to the number of units diverted to that
product multiplied by the margin between price and incremental cost on that product. In
some cases, where sufficient information is available, the Agencies assess the value of diverted
sales, which can serve as a diagnostic of the upward pricing pressure.... The Agencies rely much
more on the value of diverted sales than on the level of the HHI for diagnosing unilateral price
effects in markets with differentiated products.”

7Among the four demand systems we consider in the Monte Carlo analysis, strategic complementarity
exists for the linear, logit and almost ideal demand systems but not for the log-linear demand system, where
equilibrium prices are unaffected by competitor costs. See Section 3 for numerical results or Miller, Remer,
and Sheu (2013) for theoretical results.

8Slutsky symmetry implies ∂Qi

∂Pj
=

∂Qj

∂Pi
and it follows that:

∂2Qi

∂2Pj
=

∂

∂Pj

∂Qi

∂Pj
=

∂

∂Pj

∂Qj

∂Pi
=

∂2Qj

∂Pj∂Pi
.
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them to zero. Alternatively, Jaffe and Weyl (2013) suggest the following assumption on

demand:

Qi(P ) = ψ

(
Pi +

∑
j 6=i

µj(Pj)

)
, (8)

for some ψ : R → R and µ : R → R, which is sufficient for full identification.9 This is

a slightly more restrictive version of the horizontality assumption employed in Weyl and

Fabinger (2013). For ease of exposition we refer in later sections to equation (8) as defin-

ing the “horizontality” assumption. Once the additional identifying restrictions have been

chosen, numerical optimization can be used to select the second derivatives that minimize

the “distance” between the elements in the opposite inverse Jacobian of f(P ) and the ele-

ments in the observed pre-policy cost pass-through matrix. The selected second derivatives

then can be used to calculate the Jacobian of h(P ). These steps require expressions of the

Jacobians of f(P ) and h(P ), which we provide in Appendix A.

A similar strategy can be used if instead a measure of demand pass-through is available.

Consider demand shocks that perturb the unit sales of each product (given prices), and

denote the vector of demand shocks s. We show in Appendix B that this gives rise to the

demand pass-through matrix,

ρd(P ) ≡ ∂P

∂s
= −

(
∂falt(P )

∂P

)−1

, (9)

where entry ρdij is the effect of a demand shock for product j on i’s price. This expression

can be used to infer the second derivatives of demand that rationalize demand pass-through,

following the logic outlined for cost pass-through.

2.4 Additional theoretical results

We develop in this section three results that, in turn, (i) simplify the calculation of calculation

of first order approximation; (ii) expand the range of environments in which first order

approximation provides exact prediction; and (iii) extend first order approximation to the

industry-wide shifts that are relevant for macroeconomics and international trade.

9With horizontality, the needed second derivatives take the form

∂2Qi

∂Pj∂Pk
=

∂2Qi

∂2Pi

∂Qi

∂Pj

∂Qi

∂Pk(
∂Qi

∂Pi

)2 .
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First, for scenarios involving vertical shifts in the marginal cost or demand functions,

a first order approximation to the price changes can be obtained by multiplying the shift by

the appropriate notion of cost or demand pass-through. Numerical optimization to obtain

demand curvature from pass-through is unnecessary. Consider the case of a vertical shifts

in the cost functions. Because the derivatives of the cost function are unchanged it follows

that ∂g(P )/∂P = 0. This implies that ∂h(P )/∂P = ∂f(P )/∂P such that the policy pass-

through matrix equals the cost pass-through matrix. Analogous logic applies to the case of

vertical shifts in the demand functions. This again shows that manipulating the first order

conditions can simplify dramatically the implementation of first order approximation. We

formalize this result in the following corollary:

Corollary 1: Let P 0 be the pre-policy equilibrium price vector and let ρc(P ) be the cost

pass-through matrix. Further let g(P ) ≡ h(P ) − f(P ) = ∆MC, where ∆MC is a vertical

shift in the marginal cost functions such that ∆MC ≡ MC1(P ) −MC(P ). Then the price

changes due to the marginal cost shifts, to a first order approximation, are given by the vector

∆P = ρc(P 0)∆MC.

This result is both simple and powerful. The immediate implication is that reduced-

form econometric estimates of cost pass-through can be used to make meaningful out-of-

sample predictions, alleviating in some cases the need for structural estimation. The result

can be interpreted as provided external validity to reduced-form pass-through estimates

because, provided consistent pass-through estimates are obtained (i.e., internal validity is

achieved), the econometrician can extrapolate beyond the range of the data to model counter-

factual scenarios in a way that is fully consistent with oligopoly interactions.

Second, also for scenarios involving vertical shifts in cost or demand functions, first

order approximation provides exact predictions if pass-through is constant. This expands

the range of economic environments in which first order approximation is exact beyond

the case of quadratic profit functions considered by Jaffe and Weyl (2013). Constant pass-

through arises for a class of demand functions identified in Bulow and Pfleiderer (1983) and

commonly employed in the theoretical literature of industrial organization. With single-

product firms, the class includes as special cases the linear, log-linear and constant markup

demand systems.

Proposition 1: Let P 0 be the pre-policy equilibrium price vector and let ρc(P ) be the cost

pass-through matrix. Further let g(P ) ≡ h(P ) − f(P ) = ∆MC, where ∆MC is a vertical

shift in the marginal cost functions such that ∆MC ≡MC1(P )−MC(P ). If the underlying
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demand functions belong to the constant pass-through class then the first order approximation

defined in Corollary 1 is exact.

Proof: Let P ∗(MC(P )) represent the equilibrium prices that arise with the cost functions

MC(P ). Then the change in price due to the policy can be written∫ ∆MC

0

ρc(P ∗(MC(P 0) + x))dx.

Since pass-through is constant, ρc(P ) = ρc and the change in price simplifies to
∫ ∆MC

0
ρcdx =

ρc
∫ ∆MC

0
dx = ρc∆MC, which is the first order approximation for vertical cost shifts.

In research that predates this paper, Weyl and Fabinger (2013) provide versions of the

above proposition for the case of single-product firms. The applicability of the proposition in

settings with multi-product firms is limited as there the only demand system with constant

pass-through that also satisfies Slutsky symmetry is linear.

Finally, we develop results for cases involving vertical shifts in cost or demand that

affect all firms in an industry equally. Such “industry-wide” shifts are highly relevant to

the macroeconomics and international trade literatures because they encompass a range of

important policy topics including the connection between wages and prices, the effect of

exchange rate fluctuations, and the implications of oil price shocks. The price effects of

industry-wide shifts can be calculated, to a first order approximation, without knowledge

of the full pass-through matrix. Instead, knowledge of how firms respond to industry-wide

shifts, in the neighborhood of the initial equilibrium, and either individually or on average, is

sufficient to support predictions that are fully consistent with oligopoly interaction. Further-

more, first order approximation in such settings is exact if the underlying demand functions

belong to the constant pass-through class. These results, formalized below as a corollary to

Theorem 1 and Proposition 1, can be interpreted as conveying an external validity to the

substantial empirical literature on the pass-through of industry-wide shifts.

Corollary 2: Let every product i ∈ {1, 2, . . . , N} face an identical shift in marginal cost,

∆MCi = ∆MCj = ∆MC ∀i, j. Define industry cost pass-through as the vector ρI(P ) =

[(
∑N

j=1 ρ
c
1,j(P )), . . . , (

∑N
j=1 ρ

c
N,j(P ))], where ρcij(P ) is the cost pass-through of product i’s

price with respect to product j’s cost. Further define average industry pass-through as the

scalar ρI = 1
N

∑N
i=1 ρ

I
i (P ), where ρIi (P ) is the ith element of the industry pass-through vector.

Then the following results apply:
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(i) The product specific price changes, to a first approximation, are given by the vector

∆P = ρI(P )|P=P 0∆MC.

(ii) The average price change, to a first approximation, is given by the scalar

∆P = ρI(P )|P=P 0∆MC

and moreover, if pass-through symmetry exists such that ρcij(P ) = ρcji(P ) and ρcii(P ) =

ρcjj(P ) for all i, j, then the product-specific price changes equal the average price change.

(iii) If the underlying demand functions belong to the constant pass-through class then the

first order approximations defined in (i) and (ii) are exact.

2.5 Antitrust applications

First order approximation should be attractive to antitrust practitioners because it avoids

the recognized sensitivity of merger simulation to functional form assumptions (e.g., Crooke,

Froeb, Tschantz, and Werden (1999)) and because how the predictions are obtained – multi-

plying an opportunity cost by an appropriate notion of pass-through – likely can be conveyed

transparently to non-economists. Here we outline two simplifications that could facilitate

such an application.10 First, practitioners could use cost pass-through as an imperfect proxy

for policy pass-through. This obviates the need to obtain the second derivatives of demand

via estimation or numerical optimization, and it also retains intuitive appeal because the

prediction equals an opportunity cost multiplied by cost pass-through. Formally, we define

“simple approximation” for mergers as

∆P = ρc(P 0)g(P 0), (10)

where ρc(P 0) is the cost pass-through matrix and g(P 0) is in this instance net upward pricing

pressure. This ought to provide conservative predictions of price increases relative to first

order approximation because the elements in the policy pass-through matrix typically exceed

those in the cost pass-through matrix, as we confirm this in our Monte Carlo experiments.

Second, practitioners could use upward pricing pressure as a predictor of price changes

when information on cost pass-through is unavailable. This can be rationalized as an ap-

10These are not the only two simplifications available. For instance, Miller, Remer, Ryan, and Sheu (2012)
and Jaffe and Weyl (2013) explore various options for dealing with imperfect information on pass-through.
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proximation based on a policy pass-through matrix that equals the identity matrix:

∆P = g(P 0), (11)

which is equivalent to supposing that (i) the upward pricing pressure on each firm is passed

through to consumers at the rate of 100 percent and (ii) there are not feedback effects, via

strategic complementarity or otherwise, that lead firms to pass-through the upward pricing

pressure on other firms. While the policy pass-through matrix for mergers is never diagonal

in reality, the accuracy of this calculation in predicting price changes is an empirical question

that we explore in the Monte Carlo experiments.

3 Design of the Monte Carlo Experiments

3.1 Conceptual overview

We use Monte Carlo experiments to examine the accuracy of first order approximation.

These experiments complement the preceding theoretical results, which demonstrate the

precision of approximation only for counter-factual scenarios involving arbitrarily minute

perturbations and in certain special cases, such as when firms have quadratic profit functions

or for vertical cost/demand shifts with constant pass-through demand systems. The Monte

Carlo experiments allow us to evaluate tractably the quality of counter-factual predictions

in those settings that are most relevant for researchers and policy-makers.

We consider an array of economic environments. In each, we posit the demand and cost

functions, including both the functional forms and the parameterizations. We first compute

a “pre-policy” equilibrium under the assumption of Nash Bertrand competition and then

compute “post-policy” equilibria for a number of counterfactual scenarios enumerated below.

Comparisons of pre- and post-policy equilibria obtain the true price effects. These provide a

baseline against which to measure both first order approximation and simulation conducted

with incorrect assumptions on the relevant functional forms.

We focus on two types of counterfactual scenarios: (i) mergers between two horizontally

differentiated firms and (ii) vertical shifts in the cost functions of either a single firm or all

firms. We model mergers by assuming joint profit maximization on the part of the merging

firms. Prices in the post-merger equilibria almost always dictate positive market share

for both merging firms’ products.11 We anticipate that results obtained from the latter

11We constrain quantities to be non-negative in the post-merger equilibria. This binds in two of the 3,000
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scenarios, involving vertical shifts to firms’ cost functions, should generalize to scenarios

involving vertical shifts in demand given the theoretical similarities outlined in Section 2.

In calculating first order approximation, we utilize the requisite information on the first-

order characteristics (i.e., elasticities) and second-order characteristics (e.g., curvatures and

pass-through) of the pre-policy equilibria. We derive the second-order characteristics from

the posited functional forms, given parameterizations that we discuss below. In practice,

such information likely would be obtained independently from econometric analyses of pass-

through or other sources. In the merger scenarios, we calculate first order approximation

alternately using the second derivatives of demand as inputs and using cost pass-through as

an input with the horizontality assumption of equation (8). In the cost shift scenarios, these

two methodologies are equivalent, from Corollary 1.

We also compute equilibrium using misspecified simulations. These are conducted with

the correct first-order characteristics of the pre-policy equilibria – only the functional forms

employed are incorrect. We implement by specifying four different demand systems, positing

one as the true underlying demand system (as described above) and examining the predic-

tions of misspecified simulation using the other demand systems. Because elasticities are

identical across systems for a given pre-policy equilibrium, this isolates the role of functional

forms in driving counter-factual predictions. Of course, simulation that is conducted with

the correct functional forms obtains the true price effects. By comparing the predictions of

misspecified simulations and those of first order approximation, we develop results that are

useful to researchers who have estimated accurately the relevant economic relationships, as

they exist in the pre-policy equilibrium, but who have imperfect knowledge about how these

relationships change away from the pre-policy equilibrium.

3.2 Data generating process

We generate data using four specific functional forms for demand: those of the logit, almost

ideal, linear and log-linear demand systems. These four demand systems allow for a wide

range of curvature and pass-through conditions and are commonly employed in antitrust

analyses of mergers involving differentiated products (Werden, Froeb, and Scheffman (2004),

Werden and Froeb (2008)). They also have been used in academic studies that examine the

effect of demand curvature on the precision of counterfactual simulations and related topics

(e.g., Crooke, Froeb, Tschantz, and Werden (1999), Huang, Rojas, and Bass (2008), Miller,

Remer, and Sheu (2013)). With linear demand, there is no curvature and profit is a quadratic

linear demand cases considered.
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function of prices if marginal costs are constant. By contrast, log-linear demand and the

AIDS are quite convex and often generate pass-through in excess of unity. Logit demand

is characterized by more moderate curvature and pass-through. Both linear and log-linear

demand feature constant pass-through.

We select parameterizations that reproduce each of 3,000 randomly drawn sets of pre-

policy data. This process, known widely as calibration, works well in our context because it

generates realistic demand functions while remaining computationally tractable.12 The pre-

policy data include market shares, which we randomly allocate among four single-product

firms and the outside good, and a margin for first firm, which we draw from a uniform distri-

bution bounded by 0.20 and 0.80. We normalize all prices to one in the initial equilibrium,

which does not limit generality and conveys the minor advantage that the price changes in

the counterfactual scenarios are the same in levels and percentages.13 We also limit attention

to constant marginal cost functions. The presence of scale economies or diseconomies would

affect pass-through and first order approximation, and it is unexamined in our experiments.

In the calibration process, we first use the pre-policy data and the Nash-Bertrand as-

sumption to obtain the parameters of the logit model. These parameters imply a full set

of own-price and cross-price demand elasticities, and we use those elasticities to calibrate

the almost ideal, linear and log-linear demand systems. Because our starting point is logit

demand, consumer substitution between products is proportional to share in the pre-policy

equilibrium. This property is retained away from the pre-policy equilibrium only for logit de-

mand. Importantly, the calibration process imposes that the demand elasticities are identical

across the demand systems for a given draw of data in the pre-policy equilibria. Differences

in policy responses therefore are driven by differences in curvature and pass-through. Once

a counter-factual policy change is imposed, the elasticities that arise diverge across the de-

mand systems based on the respective functional forms.14 We defer to Appendix C the

mathematical details of the calibration process.

The randomly drawn data sets produce some calibrations with extreme pass-through

conditions and others with no post-policy equilibria. We exclude those calibrations from

the analysis, treating as extreme a pass-through rate that is negative or exceeds ten. The

pass-through criterion eliminates 74 AIDS calibrations and 164 log-linear calibrations. The

existence of equilibrium criterion eliminates 268 AIDS calibrations and 359 log-linear cali-

12The primary methodological alternative, that of randomly drawing demand parameters directly, fre-
quently produces parameter combinations that violate standard normalcy conditions.

13We have confirmed that this normalization does not affect results by checking alternative assumptions.
14Similar procedures have been employed elsewhere in the literature (e.g., Crooke, Froeb, Tschantz, and

Werden (1999)).
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brations with mergers and 209 AIDS calibrations with the cost shocks.

3.3 Summary statistics

In Table 1, we summarize the empirical distribution of selected variables as they arise in the

3,000 generated pre-policy equilibria. We use order statistics rather than empirical moments

because many of the variables exhibit considerable skew. The market shares and margins

of firm 1 are obtained from random draws. Because shares are allocated among the four

products and the outside good, the distribution of firm 1’s share is centered around 20

percent. The margin distribution reflects uniform draws with support over (0.20, 0.80). The

own-price elasticity of demand, which equals the inverse margin, has a distribution centered

around 2.08, and 90 percent of the elasticities fall between 1.32 and 4.38. These statistics

are invariant to the posited demand system because the demand systems are calibrated to

reproduce the first-order characteristics in the pre-policy equilibria.

By contrast, pass-through depends on demand curvature and varies across the four

demand systems. The median own-cost pass-through of firm 1, by which we mean the

derivative of firm 1’s equilibrium price with respect to its cost, equals 0.80, 1.19, 0.53,

and 1.87 for the logit, almost ideal, linear and log-linear demand systems, respectively.

Own-cost pass-through exhibits considerable support for the almost ideal and log-linear

demand systems but is more tightly distributed for the logit and (especially) the linear

demand systems. The cross-cost pass-through statistics are based on the derivative of firm

1’s equilibrium price with respect to firm 2’s marginal cost.15 Cross-cost pass-through reflects

the degree of strategic complementarity in prices (Bulow, Geanakoplos, and Klemperer 1985).

Median cross-cost pass-through is 0.04, 0.22, 0.09 and 0.00 for the logit, almost ideal, linear

and log-linear demand systems, respectively. While the almost ideal and log-linear demand

systems both tend to generate large own-cost pass-through, only the AIDS generates large

cross-cost pass-through as prices are not strategic complements with log-linear demand.

In Table 2, we summarize the empirical distribution of price changes that arise under

different counterfactual scenarios. The scenarios include (i) a merger of firms 1 and 2; (ii)

cost increases applied to firm 1; and (iii) cost increases applied to all firms. Given the data

generating process, the median merger induces a change in the Herfindahl-Hirschman Index

(HHI) of 652 and creates upward price pressure of 0.11.16 The interquartile range for these

statistics is 313-1078 and 0.05-0.18, respectively. To create a comparable range in the cost

15Because the firms are treated identically in the data generating process, the distribution of cross-cost
pass-through of firm i’s cost to firm j’s price is similar for any i 6= j.

16Upward pricing pressure is defined in equation (6).
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Table 1: Summary Statistics on Pre-Policy Equilibria

Median 5%. 10% 25% 75% 90% 95%

Characteristics Invariant to Demand Form
Market share 0.21 0.03 0.06 0.13 0.28 0.35 0.40
Margin 0.48 0.23 0.26 0.34 0.62 0.72 0.76
Elasticity 2.08 1.32 1.38 1.60 2.94 3.91 4.38

Own-Cost Pass-Through
Logit 0.80 0.63 0.67 0.73 0.88 0.94 0.97
AIDS 1.19 0.75 0.78 0.90 1.72 2.36 2.82
Linear 0.53 0.51 0.51 0.52 0.55 0.57 0.58
Log-Linear 1.87 1.29 1.34 1.50 2.52 3.39 3.98

Cross-Cost Pass-Through
Logit 0.04 0.00 0.01 0.02 0.06 0.09 0.11
AIDS 0.22 0.03 0.06 0.12 0.39 0.70 0.98
Linear 0.09 0.01 0.02 0.05 0.12 0.15 0.17
Log-Linear 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Summary statistics are based on 3,000 randomly-drawn sets of data on the pre-
policy equilibria. Statistics include the mean and standard deviation, as well as order
statistics for the 10th, 25th, 50th, 75th and 90th percentiles. The market share, margin
and elasticity are for the first firm. Market share and margin are drawn randomly in the
data generating process while the elasticity is the own-price elasticity of demand and
equals the inverse margin. Pass-through is calculated, following calibration, based on
the curvature properties of the respective demand systems. Own-cost pass-through is
the derivative of firm 1’s equilibrium price with respect to its own marginal cost. The
cross-cost pass-through statistics are based on the derivative of firm 1’s equilibrium price
with respect to firm 2’s marginal cost. The statistics exclude calibrations with extreme
pass-through rates that are negative or exceed ten.
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Table 2: Summary Statistics on Price Changes

Median 5%. 10% 25% 75% 90% 95%

Due to merger of firms 1 and 2
Logit 0.09 0.01 0.02 0.05 0.16 0.24 0.30
AIDS 0.18 0.01 0.03 0.08 0.46 1.09 1.88
Linear 0.08 0.01 0.02 0.04 0.14 0.21 0.28
Log-Linear 0.30 0.02 0.05 0.12 0.77 2.08 4.11

Due to cost increases specific to firm 1
Logit 0.05 0.01 0.02 0.02 0.10 0.13 0.14
AIDS 0.09 0.02 0.02 0.04 0.15 0.23 0.29
Linear 0.04 0.01 0.01 0.02 0.07 0.08 0.08
Log-linear 0.14 0.03 0.03 0.07 0.24 0.35 0.43

Due to industry-wise cost increases
Logit 0.05 0.02 0.02 0.02 0.10 0.14 0.15
AIDS 0.14 0.03 0.03 0.07 0.25 0.41 0.55
Linear 0.05 0.01 0.02 0.03 0.10 0.12 0.13
Log-linear 0.14 0.03 0.03 0.07 0.24 0.35 0.43

Notes: Summary statistics for the change in firm 1’s price, based on 3,000 randomly-
drawn sets of data on the pre-policy equilibria. Statistics include the mean and
standard deviation, as well as order statistics for the 10th, 25th, 50th, 75th and 90th
percentiles. The statistics exclude calibrations with (i) extreme pass-through rates
that are negative or exceed ten, or (ii) no post-policy equilibria.

increase scenarios, we apply to each set of pre-policy data firm-specific and industry-wide

cost increases of $0.02, $0.05, $0.10 and $0.15. Without loss of generality, all variables shown

in Table 2 pertain to the changes in firm 1’s price.

Starting with the merger scenarios, the median changes in price are 0.09, 0.18, 0.08, and

0.30 for the logit, almost ideal, linear and log-linear demand systems, respectively. Because

pre-policy prices are normalized to one, these statistics reflects both the mean level change

and mean percentage change. There is considerable dispersion within each demand system,

reflecting the range of upward pricing pressure as well as the variance in pass-through that

exists within systems. The larger price increases with the AIDS and log-linear demand reflect

more substantial pass-through of upward pricing pressure to consumers and is consistent with

the higher cost pass-through rates that arise in these systems.

With the cost increase scenarios, the median changes in firm 1’s price due to firm-

specific cost increases are 0.05, 0.09, 0.04 and 0.14 for the logit, linear, almost ideal and
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log-linear demand systems, respectively. The differences across demand systems are similar

to the differences in cost pass-through summarized previously. The median changes in firm

1’s price due to an industry-wide increase in costs are 0.05, 0.14, 0.05, and 0.14 for the

logit, linear, almost ideal and log-linear demand systems, respectively. That these price

increases tend to exceed those that arise with a firm-specific cost increase is attributable to

the strategic complementarity of prices or, equivalently, to positive cross-cost pass-through.

The exception is log-linear demand, for which strategic complementarity does not exist and

firm-specific and industry-wide cost increases have the same effect.

We provide a graphic illustration in Figure 2 of how functional form assumptions

affect the predictions of simulation. The scatter plots characterize the accuracy of merger

simulutions when the underlying demand system is logit (column 1), almost ideal (column

2), linear (column 3) and log-linear (column 4). Merger simulations are conducted assuming

demand is logit (row 1), almost ideal (row 2), linear (row 3) and log-linear (row 4). Each

dot represents the predicted and true changes in firm 1’s price for a given draw of data. Its

vertical position is the prediction of simulation and its horizontal position is the true price

effect. Dots that fall along the 45-degree line represent exact predictions while dots that fall

above (below) the line represent over (under) predictions. Prediction error is zero when the

functional form used in simulation matches that of the underlying demand system.17

As shown, logit merger simulation systematically and substantially under-predicts the

price effects of mergers when the underlying demand system is almost ideal or log-linear.18

When the underlying demand system instead is linear, logit merger simulation is roughly

correct on average but frequently either over-predicts or under-predicts price effects. AIDS

merger simulation substantially over-predicts prices increases when the underlying demand

system is logit or linear but under-predicts when it is log-linear. The performance of linear

merger simulation is analogous to that of logit merger simulation. Log-linear simulation

substantially over-predicts when the underlying demand system is not log-linear. Since, in

practice, counter-factual simulation tends to be conducted with little knowledge on the un-

derlying functional forms, these results call into question the robustness of the methodology.

We turn now to whether first order approximation obtains more robust predictions.

17Figure 2 is symmetric by construction. For example, the scatterplot for logit merger simulation when
underlying demand is AIDS is the inverse of the scatterplot for AIDS merger simulation when underlying
demand is logit.

18We provide order statistics on the prediction error that arises in these scenarios in Appendix Table D.1.
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Figure 2: Prediction Error from Misspecified Merger Simulations
Notes: The scatter plots characterize the accuracy of merger simulutions when the underlying demand system is logit (column
1), almost ideal (column 2), linear (column 3) and log-linear (column 4). Merger simulations are conducted assuming demand is
logit (row 1), almost ideal (row 2), linear (row 3) and log-linear (row 4). Each dot represents the predicted and true changes in
firm 1’s price for a given draw of data. Its vertical position is the prediction of simulation and its horizontal position is the true
price effect. Dots that fall along the 45◦ line represent exact predictions while dots that fall above (below) the line represent
over (under) predictions. Prediction error is zero when the functional form used in simulation matches that of the underlying
demand system.

4 Results of the Monte Carlo Experiments

4.1 First Order Approximation and Mergers

We first examine the accuracy of first order approximation in predicting the price effects

that arise due to mergers, the application conceptualized in Jaffe and Weyl (2013). To start,

in Figure 3 we use scatter plots to graph the prediction error that arises when the underlying

demand system is logit (column 1), almost ideal (column 2) and log-linear (column 3). First

order approximation is exact when demand is linear. We show the results of first order

approximation calculated both using demand curvature as an input (row 1) and using cost

pass-through as an input with the horizontality assumption (row 2). Each dot represents the

predicted and true changes in firm 1’s price for a given draw of data. Its vertical position

is the prediction of simulation and its horizontal position is the true price effect. Dots that
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Figure 3: Prediction Error of First Order Approximation for Mergers
Notes: The scatter plots characterize the accuracy of first order approximation when the underlying demand system is logit
(column 1), almost ideal (column 2) and log-linear (column 3). Approximation is exact when underlying demand is linear. First
order approximation is calculated with demand curvature (row 1) and with cost pass-through (row 2). Each dot represents
the predicted and true changes in firm 1’s price for a given draw of data. Its vertical position is the prediction of first order
approximation and its horizontal position is the true price effect. Dots that fall above (below) the 45◦ line represent over
(under) predictions.

fall along the 45-degree line represent exact predictions while dots that fall above (below)

the line represent over (under) predictions.

First order approximation yields accurate predictions when the underlying demand

system is logit or almost ideal, as demonstrated the clustering of dots around the 45◦ line.

Prediction error is somewhat larger with the log-linear demand system but even there it

remains visibly smaller than the prediction error that arises with misspecified simulations

and log-linear demand (see Figure 2). Clear and substantial bias arises only when underlying

demand is log-linear and first order approximation is calculated with cost pass-through –

there approximation systematically understates the true price effects.

Table 3 provides order statistics on the empirical distributions of prediction error.

The median prediction error that arises with the logit, almost ideal and log-linear demand

equals 0.001, 0.011 and −0.005, respectively, when first order approximation is calculated

using curvature as an input. This can be evaluated against both the median true price

effects of 0.09, 0.18 and 0.30, respectively, or against the median prediction that arises with

misspecified simulation (Appendix Table D.1). Median prediction error is similar when first

order approximation is calculated used cost pass-through as a input, with the exception

of the previously mentioned log-linear case. The tightness of the empirical distribution of
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Table 3: Empirical Distribution of Prediction Error for Mergers

Demand Median 5% 10% 25% 75% 90% 95%

First order approximation calculated with demand curvature
Logit 0.001 -0.001 -0.001 -0.000 0.005 0.011 0.018
AIDS 0.011 0.000 0.001 0.002 0.047 0.210 0.626
Log-Linear -0.005 -3.375 -1.198 -0.072 0.087 0.463 1.129

First order approximation calculated with cost pass-through
Logit 0.000 -0.007 -0.004 -0.001 0.003 0.007 0.013
AIDS 0.015 0.000 0.001 0.003 0.082 0.416 1.256
Log-Linear -0.101 -3.554 -1.443 -0.389 -0.028 -0.008 -0.003
Notes: The table summarizes the empirical distribution of prediction errors for firm 1’s price change
that arise with first order approximation when the true underlying demand system is logit, almost
ideal and log-linear, respectively. Separate statistics are shown for first order approximation cal-
culated using the second derivatives of demand (“demand curvature”) and using cost pass-through
with the horizontality assumption (“cost pass-through”). The statistics exclude calibrations with
(i) extreme pass-through rates that are negative or exceed ten, or (ii) no post-merger equilibria.

prediction error varies with the underlying demand system but, as we develop below, in each

case the distribution for first order approximation is more tightly centered around the true

price effect than the empirical distributions that arise with misspecified simulation.

Table 4 furthers the comparison of first order approximation and misspecified simula-

tion. For brevity results are shown only for calculations that use demand curvature as an

input; the results are similar for calculations based on pass-through and the horizontality

assumption. Panel A provides the fraction of mergers examined for which first order approxi-

mation has smaller absolute prediction error than misspecified simulation. When underlying

demand is logit, approximation is more accurate than AIDS, linear and log-linear simulation

in 99.8%, 85.5% and 100% of the mergers, respectively. When underlying demand is almost

ideal, approximation is more accurate than logit, linear and log-linear simulation in 95.1%,

96.5% and 99.3% of the mergers, respectively. With linear demand approximation is exact

and so outperforms misspecified simulations in every instance. Finally, when underlying

demand is log-linear, approximation is more accurate than logit, AIDS and linear simulation

in 76.2%, 64.7% and 77.7% of the mergers, respectively. Aggregating across these scenarios,

first order approximation is more accurate than misspecified simulation in 91.7% of mergers

considered. Panel B shows the median absolute prediction errors that arise with first order

approximation and misspecified simulations. As shown, the median absolute prediction error

of misspecified simulation often is an order of magnitude larger than that of approximation.
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Table 4: First Order Approximation versus Merger Simulation

Panel A: Frequency with which FOA is More Accurate

Underlying Demand System:

Logit AIDS Linear Log-Linear

Logit Simulation . 95.1% 100% 76.2%
AIDS Simulation 99.8% . 100% 64.7%
Linear Simulation 85.3% 96.5% . 77.7%
Log-Linear Simulation 100% 99.3% 100% .

Panel B: Median Absolute Prediction Error

Underlying Demand System:

Logit AIDS Linear Log-Linear

FOA 0.002 0.011 0.000 0.080
Logit Simulation . 0.088 0.016 0.207
AIDS Simulation 0.090 . 0.103 0.122
Linear Simulation 0.016 0.102 . 0.220
Log-Linear Simulation 0.215 0.122 0.228 .
Notes: Panel A shows the fraction of data draws for which first order approximation
has a smaller absolute prediction error than merger simulation in predicting firm 1’s
price change. Panel B shows the median absolute prediction error of first order ap-
proximation and misspecified merger simulations in predicting firm 1’s price change.
First order approximation is calculated using the second derivatives of demand (“de-
mand curvature”). The statistics exclude calibrations with (i) extreme pass-through
rates that are negative or exceed ten, or (ii) no post-merger equilibria.
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Figure 4: Kernel Density Estimation of Prediction Error Distributions for Mergers
Notes: The panels plot kernel denstity estimates of the distributions of prediction errors. Separate panels are provided for
when the underlying demand system is logit, almost ideal and log-linear. First order approximation is exact when underlying
demand is linear. Kernel density estimates are provided for first order approximation and for misspecified merger simulations.
First order approximation is calculated using the second derivatives of demand (“demand curvature”).

There are other ways to make the comparison. In Figure 4, we plot kernel density

estimates of the prediction error distributions. Separate panels are provided for when the

underlying demand system is logit, almost ideal and log-linear. The estimated densities for

approximation appear as a solid black line while the estimated densities for misspecified

simulations appear as dotted lines. In each case, the prediction error distribution for ap-

proximation is centered around zero. Those distributions are tight for the almost ideal and

(especially) the logit demand systems. This is in stark relief to the prediction error distri-

butions for misspecified simulations, which typically exhibit clear bias and fat tails. With

log-linear demand, the prediction error distribution for approximation has fatter tails but

nonetheless remains tighter and more closely centered around zero than the prediction error

distributions of misspecified simulations.

Finally, we examine the propensity of first order approximation and misspecified sim-

ulation to produce “false positives” and “false negatives.” We define a false positive as an

instance in which the true price effect is less than ten percent but the prediction exceeds ten
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Table 5: Type I and II Prediction Error for Mergers

Panel A: Frequency of False Positives (Type I)

Underlying Demand System:

Logit AIDS Linear Log-Linear

FOA 1.6% 1.5% 0.0% 0.9%
Logit Simulation . 0.3% 9.6% 0.0%
AIDS Simulation 23.2% . 30.4% 0.0%
Linear Simulation 2.2% 0.0% . 0.0%
Log-Lin Simulation 34.4% 12.6% 41.8% .

Panel B: Frequency of False Negatives (Type II)

Underlying Demand System:

Logit AIDS Linear Log-Linear

FOA 0.0% 1.0% 0.0% 14.5%
Logit Simulation . 25.0% 2.2% 39.1%
AIDS Simulation 0.2% . 0.0% 13.3%
Linear Simulation 9.6% 32.4% . 46.8%
Log-Lin Simulation 0.0% 0.0% 0.0% .
Notes: Panel A shows the fraction of data draws for which the true price change in
firm 1’s price is less than 10 percent but the prediction exceeds 10 percent. Panel
B the fraction of data draws for which the true price change exceeds 10 percent
but the prediction is less than 10 percent. First order approximation is calculated
using the second derivatives of demand (“demand curvature”). The statistics
exclude calibrations with (i) extreme pass-through rates that are negative or
exceed ten, or (ii) no post-merger equilibria.

percent. Analogously, we define a false negative as an instance in which the true price effect

exceeds ten percent but the prediction is less than ten percent. We select ten percent purely

based on the empirical distribution of true prices changes: in each demand system, many

mergers produce true price effects both above and below this threshold. We have examined

other thresholds and the qualitative results are unaffected.

Overall, prediction based on first order approximation exhibits both few false positive

and few false negatives while prediction based on misspecified merger simulation typically

exhibits either many false positive or many false negatives. When the underlying demand

system is logit or linear, first order approximation dominates misspecified merger simula-

tion, in the sense that approximation produces fewer false positives and at least as few false

negatives. When demand is almost ideal, first order approximation produces both low rates

of false positives – many fewer than log-linear simulation – and also low rates of false neg-
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atives – many fewer than logit and linear simulation. With log-linear demand, first order

approximation has a low rate of false positives that nonetheless exceeds the false positive

rates of misspecified simulations. This reflects the much larger price effects that arise with

log-linear demand. Its rate of false negatives is comparable to that of AIDS simulation and

much lower than that of logit or linear simulation.

4.2 First Order Approximation and Cost Shifts

We now examine the predictions of first order approximation and simulation for counter-

factual scenarios involving vertical shifts to the marginal cost functions. We impose cost

increases of $0.02, $0.05, $0.10 and $0.15, first on the marginal cost of the first firm (a “firm-

specific cost shock”) and then on all four firms (an “industry-wide cost shock”). Recall from

Proposition 1 that first order approximation is exact in such settings if cost pass-through is

constant, as it is with linear and log-linear demand. Also, from Corollary 1, the predictions

of first order approximation are unchanged whether they are calculated using second deriva-

tives of demand, cost pass-through with horizontality, or cost pass-through as a proxy for

policy pass-through.

Figure 5 provides scatter plots of the predicted and true price effects when the underly-

ing demand system is logit (column 1) and almost ideal (column 2), and for the firm-specific

cost shocks (row 1) and the industry-wide cost shocks (row 2). Each dots falls close to

the 45◦ line, indicating that the predictions of first order approximation are nearly exact in

these settings. For firm-specific cost shocks, the median prediction error that arises when

underlying demand is logit and almost ideal, respectively, is −0.001 and 0.002, relative to

median price effects of 0.05 and 0.09. In the case of industry-wide cost shocks, the median

prediction errors are within rounding error of zero. More order statistics are presented in

Appendix Tables D.2 and D.3 to flesh out the empirical distribution of prediction error.

Table 6 compares the accuracy of first order approximation to that misspecified sim-

ulation for the case of the firm-specific cost shocks. Panel A provides the fraction of cost

shocks examined for which first order approximation has smaller absolute prediction error

than misspecified simulation. When underlying demand is logit, approximation is more ac-

curate than AIDS, linear and log-linear simulation in 96.3%, 99.3% and 100% of the mergers,

respectively. When underlying demand is almost ideal, approximation is more accurate than

logit, linear and log-linear simulation in 95.9%, 100% and 99.9% of the mergers, respectively.

With linear and log-linear demand, first order approximation is exact and so outperforms

misspecified simulations in every instance. Panel B shows the median absolute prediction
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Figure 5: Prediction Error of First Order Approximation for Cost Shocks
Notes: The scatter plots characterize the accuracy of first order approximation when the underlying demand system is logit
(column 1) and almost ideal (column 2). First order approximation is exact for vertical marginal cost shifts when underlying
demand is linear or log-linear. Firm-specific cost shocks are represented in the top row and industry-wide cost shocks are
represented in the bottom row. Each dot represents the predicted and true changes in firm 1’s price for a given draw of data.
Its vertical position is the prediction of first order approximation and its horizontal position is the true price effect. Dots that
fall above (below) the dotted 45◦ line represent over (under) predictions.

errors that arise with first order approximation and misspecified simulations. These are near

zero for first order approximation but tend to range between 0.02 and 0.10 for misspecified

simulations. Appendix Table D.2 provides further information on the empirical distribution

of prediction error for misspecified simulations for firm-specific cost shocks.

The same comparisons can be made for the case of the industry-wide cost shocks.

Indeed we find that first order approximation produces smaller absolute prediction error than

misspecified simulation more than 99% of the time for industry-wide cost shocks, regardless

of the underlying demand system or the misspecified simulation technique employed. The

median absolute prediction error that arises with first order approximation are either 0.001

(when the underlying demand system is almost ideal) or within rounding error of zero. The

median absolute prediction errors that arise with misspecified simulation are larger, typically

between 0.01 and 0.08. Appendix Table D.3 provides further information on the empirical

distribution of prediction error for misspecified simulations for industry-wide cost shocks.
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Table 6: FOA versus Simulation for Firm-Specific Cost Shocks

Panel A: Frequency with which FOA is More Accurate

Underlying Demand System:

Logit AIDS Linear Log-Linear

Logit Simulation . 95.9% 100% 100%
AIDS Simulation 96.3% . 100% 100%
Linear Simulation 99.3% 100% . 100%
Log-Linear Simulation 100% 99.9% 100% .

Panel B: Median Absolute Prediction Error

Underlying Demand System:

Logit AIDS Linear Log-Linear

FOA 0.001 0.002 0.000 0.000
Logit Simulation . 0.022 0.018 0.071
AIDS Simulation 0.022 . 0.041 0.058
Linear Simulation 0.018 0.039 . 0.097
Log-Linear Simulation 0.074 0.058 0.101 .
Notes: Panel A shows the fraction of data draws for which first order approxima-
tion has a smaller absolute prediction error than simulation in predicting firm 1’s
change in price, for counter-factuals involving a firm-specific marginal cost shock.
Panel B shows the median absolute prediction error of first order approximation and
misspecified merger simulations in predicting firm 1’s change in price. The statistics
exclude calibrations with (i) extreme pass-through rates that are negative or exceed
ten, or (ii) no post-policy equilibria.
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Figure 6: Prediction Error of Simplified First Order Approximation for Mergers
Notes: The scatter plots characterize the accuracy of first order approximation when the underlying demand system is logit
(column 1), almost ideal (column 2), linear (column 3) and log-linear (column 4). Simple approximation is calculated using
cost pass-through as a proxy for policy pass-through (row 1), whereas UPP is calculated using the identity matrix as a proxy
for policy pass-through (row 2). Each dot represents the predicted and true changes in firm 1’s price for a given draw of data.
Its vertical position is the prediction of first order approximation and its horizontal position is the true price effect. Dots that
fall above (below) the dotted 45◦ line represent over (under) predictions.

4.3 Simplified predictors for mergers

Lastly, we examine the accuracy of two versions of first order approximation that should be

useful to antitrust practitioners: simple approximation, for which cost pass-through is used

as a proxy for policy pass-through, and upward pricing pressure (UPP), for which an identity

matrix is used in the place of policy pass-through. To start, Figure 6 provides scatter plots

that display the predicted price effects of simple approximation (row 1) and upward pricing

pressure (row 2) against the the true price effects that arise when the underlying demand

system is logit (column 1), almost ideal (column 2), linear (column 3), and log-linear (column

4). Unlike the first order approximation, these versions of approximation are not exact when

demand is linear.

The simple approximation yields accurate predictions when the underlying demand

system is logit, as demonstrated by the tight clustering of dots along the 45-degree line, but
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Table 7: MAPEs with Simplified Approaches for Mergers

Underlying Demand System:

Logit AIDS Linear Log-Linear

Simple 0.002 0.049 0.010 0.123
UPP 0.011 0.077 0.023 0.197
Notes: MAPE is median absolute prediction error as it relates
to predicting firm 1’s change in price. Separate statistics are
shown for the cases in which the underlying demand system is
logit, almost ideal, linear and log-linear. Simple approximation
is calculated using cost pass-through as a proxy for policy pass-
through, whereas UPP is calculated using the identity matrix
as a proxy for policy pass-through. The statistics exclude cali-
brations with (i) extreme pass-through rates that are negative
or exceed ten, or (ii) no post-merger equilibria.

otherwise provides predictions that systematically understate the true price effects. This

property arises because the elements of the policy pass-through matrix typically exceed those

of the cost pass-through matrix. In some instances, the property also may be desirable as

the conservative predictions of simple approximation lessen the frequency of false positives.

Upward pricing pressure is less consistent and tends to exceed the true price effects when

underlying demand is logit or linear but understate the true price effects with almost ideal

or log-linear demand.

Table 7 shows the median absolute prediction error that arises with simple approxima-

tion is 0.002, 0.049, 0.010 and 0.123 with logit, almost ideal, linear and log-linear demand,

respectively. Analogously, the median absolute prediction error that arises with upward

pricing pressure approximation is 0.011, 0.077, 0.023 and 0.197. Thus some precision is

lost relative to first order approximation but these versions of approximation nonetheless

are more accurate than misspecified merger simulation for most demand systems (see Table

4).19 We provide details on the empirical distribution of prediction error in Appendix Tables

D.1.

Table 8 furthers this comparison with misspecified simulation. Panel A provides the

fraction of mergers examined for which simple approximation has smaller absolute prediction

error than misspecified simulation. When underlying demand is logit, approximation is

more accurate than AIDS, linear and log-linear simulation in 99.5%, 91.3% and 100% of

the mergers, respectively. When underlying demand is almost ideal, simple approximation

19Logit simulation is more accurate than upward pricing pressure when demand is linear and AIDS sim-
ulation is more accurate than both simple approximation and upward pricing pressure when demand is
log-linear.
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Table 8: Simplified Approaches versus Simulation for Mergers

Panel A: Frequency Simple Approx. is More Accurate

Underlying Demand System:

Logit AIDS Linear Log-Linear

Logit Simulation . 94.4% 52.7% 100%
AIDS Simulation 99.5% . 99.8% 43.5%
Linear Simulation 91.3% 97.3% . 99.2%
Log-Linear Simulation 100% 97.5% 100% .

Panel B: Frequency with which UPP is More Accurate

Underlying Demand System:

Logit AIDS Linear Log-Linear

Logit Simulation . 95.3% 20.7% 100%
AIDS Simulation 97.1% . 94.3% 7.0%
Linear Simulation 58.1% 87.7% . 89.1%
Log-Linear Simulation 100% 86.0% 100% .
Notes: Panels A and B show the fraction of data draws for which simplified FOA and
UPP, respectively, have a smaller absolute prediction error than merger simulation
in predicting firm 1’s change in price. Simplified FOA is calculated using cost pass-
through as a proxy for policy pass-through, whereas UPP is calculated using the
identity matrix as a proxy for policy pass-through.The statistics exclude calibrations
with (i) extreme pass-through rates that are negative or exceed ten, or (ii) no post-
merger equilibria.

is more accurate than logit, linear and log-linear simulation in 94.4%, 97.3% and 97.5%

of the mergers, respectively. When underlying demand is linear, simple approximation is

more accurate than logit, almost ideal and log-linear simulation in 52.7%, 99.8% and 100%

of the mergers, respectively. And finally, when underlying demand is log-linear, simple

approximation is more accurate than logit, almost ideal, and linear simulation in 100%,

43.5%, and 99.2% of the mergers, respectively. Aggregating across these scenarios, simple

approximation outperforms misspecified simulation in 89.6% of the mergers examined.

Panel B offers the same comparison for upward pricing pressure. When underlying

demand is logit, UPP is more accurate than AIDS, linear and log-linear simulation in 97.1%,

58.1% and 100% of the mergers, respectively. When underlying demand is almost ideal,

UPP is more accurate than logit, linear and log-linear simulation in 95.3%, 87.7% and 86.0%

of the mergers, respectively. When underlying demand is linear, UPP is more accurate

than logit, almost ideal and log-linear simulation in 20.7%, 94.3% and 100% of the mergers,

respectively. And finally, when underlying demand is log-linear, UPP is more accurate
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than logit, almost ideal, and linear simulation in 100%, 7.0%, and 89.1% of the mergers,

respectively. Aggregating across these scenarios, UPP outperforms misspecified simulation

in 77.9% of the mergers examined.

5 Concluding Remarks

Our results demonstrate that first order approximation can be a powerful tool with which

to make counterfactual predictions while remaining agnostic about the functional forms

of the underlying economic model. While grounded in the oligopoly theory of industrial

organization, its usefulness extends into other fields of economics including macroeconomics

and international trade. A full application of the methodology requires the researcher to

bring more information to bear – namely information on pass-through or demand curvature

in the observed equilibria – than do most simulation-based prediction methodologies. This

points to a potentially valuable research agenda that we sketch here.

First, the prospect of first order approximation accentuates the value of empirical

research that examines the pass-through behavior of firms. Recent progress has been made

on that front. For instance, in addition to the research cited herein, Marion and Muehlegger

(2011) and Fabra and Reguant (2013) explore pass-through in the gasoline retail markets and

wholesale electricity markets, respectively. Related is the econometric question whether, and

under which conditions, reduced-form regressions can obtain consistent estimates of pass-

through when pass-through is non-constant or when costs are partially observed.

Second, placing weight on estimated pass-through begs the question of whether the

derived theoretical relationship between local demand curvature and cost pass-through ex-

tends to real-world settings, or whether menu costs and rule-of-thumb pricing obstruct the

connection. Such issues may create a relevant distinction between long run and short run

pass-through rates. This distinction is emphasized in the sizable literature on asymmetric

pass-through (e.g., Borenstein, Cameron, and Gilbert (1997), Peltzman (2000)) and in-

creasingly is modeled explicitly (e.g., Nakamura and Zerom (2010), Neiman (2010), Neiman

(2011), Golberg and Hellerstein (2013)), but more work on this subject would be valuable.

Lastly, first order approximation is not the only way to make reasonable counterfactual

predictions without imposing functional form assumptions on an economic model. Recent

contributions demonstrate the random coefficients logit model is non-parametrically identi-

fied (Bajari, Fox, Kim, and Ryan (2012), Berry, Gandhi, and Haile (2013)) and therefore

capable of providing estimates of demand curvature that are independent of the elasticity
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estimates. Research that ascertains the empirical variation required in practice to identify

the second order properties of the model would have value, as would research that examines

the accuracy of simulations based on flexibly-estimated random coefficients logit model when

the true underlying model is not logit.
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Appendix

A Derivation of Policy Pass-Through

In this appendix, we provide an expression for the Jacobian of h(P ), which can be used

to construct the policy pass-through matrix as used in Theorem 1. Using the definition

h(P ) ≡ f(P ) + g(P ), we have

∂h(P )

∂P
=
∂f(P )

∂P
+
∂g(P )

∂P
. (A.12)

The Jacobian of f(P ) can be written as:

∂f(P )

∂P
=


∂f1(P )
∂p1

. . . ∂f1(P )
∂pN

...
. . .

...
∂fJ (P )
∂p1

. . . ∂fJ (P )
∂pN

 , (A.13)

where N is the total number of products and J is the number of firms. The vector P includes

all prices; we use lower case to refer to the prices of individual products, so that pn represents

the price of product n. In the case that product n is sold by firm i,

∂fi(P )

∂pn
= −



0
...

1

0
...


+

[
∂Qi

∂Pi

T]−1
[
∂2Qi

∂Pi∂pn

T
] [

∂Qi

∂Pi

T]−1

Qi −
[
∂Qi

∂Pi

T]−1 [
∂Qi

∂pn

]
, (A.14)

whereQi and Pi are vectors representing the quantities and prices respectively of the products

owned by firm i, and the initial vector of constants has a 1 in the firm-specific index of the

product n. For example, if product 5 is the third product of firm 2, then the 1 will be in

the 3rd index position when calculating ∂f2(P )/∂p5. If product n is not sold by firm i, the

vector of constants is ~0, and thus

∂fi(P )

∂pn
=

[
∂Qi

∂Pi

T]−1
[
∂2Qi

∂Pi∂pn

T
][

∂Qi

∂Pi

T]−1

Qi −
[
∂Qi

∂Pi

T]−1 [
∂Qi

∂pn

]
. (A.15)
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The matrix ∂g(P )/∂P can be decomposed in a similar manner:

∂g(P )

∂P
=



∂g1(P )
∂p1

. . . ∂g1(P )
∂pN

...
. . .

...
∂gK(P )
∂p1

. . . ∂gK(P )
∂pN

0 . . . 0

↓ ↓


, (A.16)

where N is the number of products and K is the number of merging firms. Notice that

∂g(P )/∂P includes zeros for non-merging firms, because the merger does not create oppor-

tunity costs for these firms. In the case that product n is sold by a firm merging with firm

i (this does not include firm i itself),

∂gi(P )

∂pn
= −

[
∂Qi

∂Pi

T]−1 [
∂Qj

∂Pi

T]


0
...

1

0
...


(A.17)

+

([
∂Qi

∂Pi

T]−1
[
∂2Qi

∂Pi∂pn

T
] [

∂Qi

∂Pi

T]−1 [
∂Qj

∂Pi

T]
−
[
∂Qi

∂Pi

T]−1
[
∂2Qj

∂Pi∂pn

T
])

(Pj − Cj),

where Qj, Pj, and Cj are vectors of the quantities, prices, and marginal costs respectively of

products sold by firms merging with firm i, and the vector of 1s and 0s has a 1 in the merging

firm’s firm-specific index of the product n. For example, if product 5 is the third product of

firm 2, and firm 2 is merging with firm 1, then the 1 will be in the 3rd index position when

calculating ∂g1(P )/∂p5. It is an important distinction that – supposing there are more than

two merging parties – the index j refers to all of the merging parties’ products, excluding

firm i’s products. If product n is not sold by any firm merging with firm i (including a

product sold by firm i),

∂gi(P )

∂pn
=

([
∂Qi

∂Pi

T]−1
[
∂2Qi

∂Pi∂pn

T
] [

∂Qi

∂Pi

T]−1 [
∂Qj

∂Pi

T]
−
[
∂Qi

∂Pi

T]−1
[
∂2Qj

∂Pi∂pn

T
])

(Pj − Cj).

(A.18)
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B Derivation of Demand Pass-Through

Consider demand shocks that perturb the unit sales of each product (given prices), and

denote the vector of demand shocks s. Since unit sales enter quasi-linearly into the alter-

native first order conditions of each firm with a coefficient of one, the post-shock first order

conditions can be expressed

falt(P ) + s = 0. (B.1)

Differentiating with respect to s obtains

∂P

∂s

∂falt(P )

∂P
+ I = 0, (B.2)

and algebraic manipulations then yield the demand pass-through matrix:

ρd ≡ ∂P

∂s
= −

(
∂falt(P )

∂P

)−1

. (B.3)

C Mathematical Details of the Calibration Process

We provide mathematical details on the calibration process in this appendix. To distinguish

the notation from that of Section 2, we move to lower cases and let, for example, si and pi

be the market share and price of firm i’s product, respectively.20 Recall that in the data

generating process we randomly assign market shares among the four single-product firms

and the outside good, draw the price-cost margin of the first firm’s product from a uniform

distribution with support over (0.2, 0.8), and normalize all prices to unity. The calibration

process then obtains parameters for the logit, almost ideal, linear and log-linear demand

systems that reproduce these draws of data.

Calibration starts with multinomial logit demand, the basic workhorse model of the

discrete choice literature. The system is defined by the share equation

si =
e(δi−αpi)

1 +
∑N

j=1 e
(δj−αpj)

. (C.1)

The parameters to be calibrated include the price coefficient α and the product-specific

quality terms δi. We recover the price coefficient by combining the data with the first order

20We define market share si = qi/
∑N

j=1 qj , where qi represents unit sales.
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conditions of the first firm. Under the assumption of Nash-Bertrand competition this yields:

α =
1

m1p1(1− s1)
(C.2)

wherem1 is the price-cost margin of firm 1. We then identify the quality terms that reproduce

the market shares:

δi = log(si)− log(s0) + αpi, (C.3)

for i = 1 . . . N . We follow convention with the normalization δ0 = 0. Occasionally, a set

of randomly-drawn data cannot be rationalized with logit demand and we replace it with a

set that can be rationalized. This tends to occurs when the first firm has both an unusually

small market share and an unusually high price-cost margin.

The logit demand system often is criticized for its inflexible demand elasticities. Here,

the restrictions on substitution are advantageous and allow us to obtain a full matrix of

elasticities with a tractable amount of randomly drawn data. The derivatives of demand

with respect to prices, as is well known, take the form

∂qi
∂pj

=

{
αsi(1− si) if i = j

−αsisj if i 6= j.
(C.4)

We use the logit derivatives to calibrate the more flexible almost ideal, linear and log-linear

demand systems. This ensures that each demand system has the same first order properties

in the pre-policy equilibrium, for a given draw of data.

The AIDS is written in terms of expenditure shares instead of quantity shares (Deaton

and Muellbauer 1980). The exenditure share of product i takes the form

wi = αi +
N∑
j=0

γij log pj + βi log(x/P ), (C.5)

where x is total expenditure and P is a price index. We incorporate the outside good

as product i = 0 and normalize its price to one; this reduces to N2 the number of price

coefficients in the system that must be identified (i.e., γij for i, j 6= 0). We further set βi = 0

for all i, a restriction that imposes in income elasticity of unity. Under this restriction, total

expenditures are given by

log(x) = (α̃ + uβ̃) +
N∑
k=1

αk log(pk) +
1

2

N∑
k=1

N∑
j=1

γkj log(pk) log(pj) (C.6)
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for some utility u. We identify the sum α̃ + uβ̃ rather than α̃, u and β̃ individually.21

Given this structure, product i’s unit sales are given by qi = xwi/pi and the first

derivatives of demand take the form

∂qi
∂pj

=

{
x
p2i

(γii − wi + w2
i ) if i = j

x
pipj

(γij + wiwj) if i 6= j.
(C.7)

The calibration process for the AIDS then takes the following four steps:

1. Calculate x and wi from the randomly drawn data on market shares, using a market

size of one to translate market shares into quantities.

2. Recover the price coefficients γij for i, j 6= 0 that equate the AIDS derivatives given in

equation (C.7) and the logit derivatives given in equation (C.4). Symmetry is satisfied

because consumer substitution is proportional to share in the logit model. The outside

good price coefficients, γi0 and γ0i for all i, are not identified and do not affect outcomes

under the normalization the p0 = 1. Nonetheless, they can be conceptualized as taking

values such that the adding up restrictions
∑N

i=0 γij = 0 hold for all j.

3. Recover the expenditure share intercepts αi from equation (C.5), leveraging the nor-

malization that βi = 0. The outside good intercept α0 is not identified and does not

affect outcomes, but can be conceptualized as taking a value such that the adding up

restriction
∑N

i=0 αi = 1 holds.

4. Recover the composite term (α̃ + uβ̃) from equation (C.6).

This process creates an AIDS that, for any given set of data, has quantities and elasticities

that are identical in the pre-policy equilibrium to those that arise under logit demand. The

system possess all the desirable properties defined in Deaton and Muellbauer (1980). Our

approach to calibration differs from Epstein and Rubinfeld (2001), which does not model the

price index as a function of the parameters, and from Crooke, Froeb, Tschantz, and Werden

(1999), which assumes total expenditures are fixed.

We turn now to the linear and log-linear demand systems. The first of these takes the

form

qi = αi +
∑
j

βijpj, . (C.8)

21The price index P is defined implicitly by equation (C.6) as the combination of prices that obtains utility
u given expenditure x. A formulation is provided in Deaton and Muellbauer (1980).
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The parameters to be calibrated include the firm specific intercepts αi and the price coef-

ficients βij. We recover the price coefficients directly from the logit derivatives in equation

(C.4). We then recover the intercepts to equate the implied quantities in equation (C.8)

with the randomly drawn market shares, again using a market size of one. Of similar form

is the log-linear demand system:

log(qi) = γi +
∑
j

εij log pj, (C.9)

where the parameters to be calibrated are the intercepts γi and the price coefficients εij.

Again we recover the price coefficients from the logit derivatives (converting first the deriva-

tives into elasticities). We then recover the intercepts to equate the implied quantities with

the market share data. This process creates linear and log-linear demand systems that,

for any given set of data, has quantities and elasticities that are identical to those of the

calibrated logit and almost ideal demand systems, in the pre-policy equilibrium.

D Additional Results

We include here three tables that provide order statistics, summarizing the empirical distri-

butions of prediction error, for each of the four demand systems and each of the prediction

methodologies. Table D.1 considers the merger counterfactual scenarios, Table D.2 considers

the firm-specific cost shock scenarios, and Table D.3 considers the industry-wide cost shock

scenarios. We refer the reader to Section 3 for details on the data generating processes.
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Table D.1: Empirical Distribution of Prediction Errors for Mergers

Demand Median 5% 10% 25% 75% 90% 95%

Underlying Demand System is Logit
FOA with Full Info 0.001 -0.001 -0.001 -0.000 0.005 0.011 0.018
FOA with Pass-through 0.000 -0.007 -0.004 -0.001 0.003 0.007 0.013
Simplified FOA -0.001 -0.012 -0.008 -0.003 0.001 0.003 0.005
UPP 0.011 0.001 0.002 0.005 0.020 0.031 0.038
Logit Simulation . . . . . . .
AIDS Simulation 0.090 0.001 0.004 0.023 0.319 0.906 1.608
Linear Simulation -0.006 -0.087 -0.063 -0.029 0.003 0.022 0.047
Log-Linear Simulation 0.215 0.012 0.026 0.073 0.658 1.975 4.244

Underlying Demand System is Almost Ideal
FOA with Full Info 0.011 0.000 0.001 0.002 0.047 0.210 0.626
FOA with Pass-through 0.015 0.000 0.001 0.003 0.082 0.416 1.256
Simplified FOA -0.049 -1.324 -0.651 -0.189 -0.013 -0.003 -0.001
UPP -0.077 -1.580 -0.886 -0.297 -0.017 -0.002 0.001
Logit Simulation -0.088 -1.617 -0.907 -0.315 -0.023 -0.004 -0.001
AIDS Simulation . . . . . . .
Linear Simulation -0.102 -1.631 -0.922 -0.334 -0.033 -0.012 -0.006
Log-Linear Simulation 0.121 0.007 0.015 0.045 0.355 1.135 2.610

Underlying Demand System is Linear
FOA with Full Info 0.000 0.000 0.000 0.000 0.000 0.000 0.000
FOA with Pass-through 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Simplified FOA -0.010 -0.077 -0.051 -0.025 -0.004 -0.001 -0.000
UPP 0.019 -0.019 -0.003 0.005 0.044 0.078 0.100
Logit Simulation 0.006 -0.047 -0.022 -0.003 0.029 0.063 0.087
AIDS Simulation 0.103 0.006 0.012 0.033 0.340 0.918 1.619
Linear Simulation . . . . . . .
Log-Linear Simulation 0.228 0.014 0.030 0.083 0.671 2.025 4.237

Underlying Demand System is Log-Linear
FOA with Full Info -0.005 -3.375 -1.198 -0.072 0.087 0.463 1.129
FOA with Pass-through -0.101 -3.554 -1.443 -0.389 -0.028 -0.008 -0.003
Simplified FOA -0.123 -3.544 -1.568 -0.455 -0.035 -0.010 -0.004
UPP -0.197 -3.930 -1.883 -0.617 -0.064 -0.022 -0.010
Logit Simulation -0.207 -3.962 -1.904 -0.631 -0.070 -0.026 -0.012
AIDS Simulation -0.122 -2.587 -1.132 -0.358 -0.046 -0.016 -0.007
Linear Simulation -0.220 -3.958 -1.921 -0.643 -0.081 -0.029 -0.014
Log-Linear Simulation . . . . . . .

Notes: The table summarizes the empirical distribution of prediction errors that arise with eight different
methodologies when the true underlying demand system is logit, almost ideal, linear and log-linear, respec-
tively. FOA with Full Information is first order approximation calculated using the second derivatives of
demand. FOA with Pass-through is first order approximation calculated using cost pass-through and the hor-
izontality assumption. Simplified FOA is calculated using cost pass-through as a proxy for policy pass-through.
UPP is calculated using the identity matrix as a proxy for policy pass-through.
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Table D.2: Empirical Distribution of Prediction Errors for Firm-Specific Cost Shocks

Demand Median 5% 10% 25% 75% 90% 95%

Underlying Demand System is Logit
FOA -0.001 -0.005 -0.004 -0.002 -0.000 -0.000 -0.000
UPP 0.011 0.001 0.002 0.005 0.021 0.033 0.039
Logit Simulation . . . . . . .
AIDS Simulation 0.020 -0.012 -0.005 0.003 0.061 0.133 0.196
Linear Simulation -0.018 -0.059 -0.049 -0.035 -0.008 -0.004 -0.003
Log-Linear Simulation 0.074 0.013 0.018 0.035 0.147 0.261 0.350

Underlying Demand System is Almost Ideal
FOA 0.002 0.000 0.000 0.000 0.006 0.010 0.014
UPP -0.008 -0.159 -0.104 -0.041 0.005 0.021 0.029
Logit Simulation -0.020 -0.187 -0.126 -0.058 -0.003 0.005 0.013
AIDS Simulation . . . . . . .
Linear Simulation -0.039 -0.218 -0.158 -0.085 -0.019 -0.009 -0.006
Log-Linear Simulation 0.058 0.012 0.013 0.028 0.094 0.127 0.155

Underlying Demand System is Linear
FOA 0.000 0.000 0.000 0.000 0.000 0.000 0.000
UPP 0.030 0.009 0.009 0.016 0.051 0.071 0.072
Logit Simulation 0.018 0.003 0.004 0.008 0.035 0.049 0.059
AIDS Simulation 0.041 0.006 0.010 0.019 0.088 0.164 0.229
Linear Simulation . . . . . . .
Log-Linear Simulation 0.101 0.018 0.024 0.046 0.179 0.296 0.384

Underlying Demand System is Log-Linear
FOA 0.000 0.000 0.000 0.000 0.000 0.000 0.000
UPP -0.056 -0.300 -0.216 -0.119 -0.027 -0.013 -0.009
Logit Simulation -0.071 -0.329 -0.243 -0.140 -0.034 -0.017 -0.013
AIDS Simulation -0.058 -0.156 -0.127 -0.094 -0.028 -0.013 -0.012
Linear Simulation -0.097 -0.360 -0.278 -0.171 -0.045 -0.023 -0.018
Log-Linear Simulation . . . . . . .

Notes: The table summarizes the empirical distribution of prediction errors that arise with eight different
methodologies when the true underlying demand system is logit, almost ideal, linear and log-linear, respec-
tively. FOA is first order approximation. With vertical shifts to the marginal cost function, FOA is identical
whether calculated using second derivatives, cost pass-through with horizontality, or cost pass-through as a
proxy for policy pass-through. UPP is calculated using the identity matrix as a proxy for policy pass-through.
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Table D.3: Empirical Distribution of Prediction Errors for Industry-Wide Cost Shocks

Demand Median 5% 10% 25% 75% 90% 95%

Underlying Demand System is Logit
FOA 0.000 -0.000 0.000 0.000 0.000 0.001 0.001
UPP 0.003 0.000 0.000 0.001 0.007 0.013 0.017
Logit Simulation . . . . . . .
AIDS Simulation 0.060 0.007 0.011 0.024 0.148 0.308 0.453
Linear Simulation -0.007 -0.030 -0.024 -0.015 -0.003 -0.001 -0.001
Log-Linear Simulation 0.065 0.010 0.015 0.031 0.135 0.244 0.332

Underlying Demand System is Almost Ideal
FOA 0.000 -0.015 -0.005 -0.000 0.001 0.002 0.003
UPP -0.054 -0.422 -0.290 -0.136 -0.020 -0.007 -0.004
Logit Simulation -0.059 -0.431 -0.297 -0.144 -0.024 -0.011 -0.006
AIDS Simulation . . . . . . .
Linear Simulation -0.070 -0.447 -0.310 -0.155 -0.032 -0.015 -0.010
Log-Linear Simulation 0.001 -0.148 -0.075 -0.018 0.011 0.027 0.039

Underlying Demand System is Linear
FOA 0.000 0.000 0.000 0.000 0.000 0.000 0.000
UPP 0.012 0.001 0.003 0.005 0.024 0.035 0.041
Logit Simulation 0.007 0.001 0.001 0.003 0.015 0.024 0.030
AIDS Simulation 0.071 0.010 0.015 0.032 0.161 0.325 0.471
Linear Simulation . . . . . . .
Log-Linear Simulation 0.076 0.013 0.018 0.036 0.149 0.261 0.349

Underlying Demand System is Log-Linear
FOA 0.000 0.000 0.000 0.000 0.000 0.000 0.000
UPP -0.056 -0.300 -0.216 -0.119 -0.027 -0.013 -0.009
Logit Simulation -0.062 -0.310 -0.226 -0.126 -0.029 -0.015 -0.010
AIDS Simulation -0.002 -0.039 -0.027 -0.011 0.014 0.060 0.111
Linear Simulation 0.073 -0.327 -0.242 -0.141 -0.034 -0.018 -0.013
Log-Linear Simulation . . . . . . .

Notes: The table summarizes the empirical distribution of prediction errors that arise with eight different
methodologies when the true underlying demand system is logit, almost ideal, linear and log-linear, respec-
tively. FOA is first order approximation. With vertical shifts to the marginal cost function, FOA is identical
whether calculated using second derivatives, cost pass-through with horizontality, or cost pass-through as a
proxy for policy pass-through. UPP is calculated using the identity matrix as a proxy for policy pass-through.
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