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Abstract 
 
 
We re-examine whether knowledge flows are localized by applying machine learning to patent 
texts to map the position of each patent in a vector space representation of the technology space. 
We first apply this new technology space representation to show that technology classification-
based localization analyses are likely to yield biased results as we observe geographical 
agglomeration within patent classes and subclasses, thus contributing to the debate begun by 
Jaffe, Trajtenberg, and Henderson (1993) and Thompson and Fox-Kean (2005). We then apply 
the new technology space representation to re-examine knowledge flow localization. Our results 
continue to find support for localization. Thus, the bias present in earlier localization analyses 
was not the sole driver of the results.  
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1. Introduction 

 

The localization of knowledge spillovers shapes the way that economic activity is organized.  

Going at least as far back as Marshall (1890), economists have argued that, along with 

specialized suppliers and labor market pooling, the localization of knowledge spillovers is one of 

the principal forces driving the agglomeration of technological activity, and therefore the 

existence of cities. Places like Silicon Valley thrive in spite of their high congestion costs 

because high-tech firms derive benefits from being near other high-tech firms. The localization 

of knowledge spillovers also underpins the rationale behind the public support of R&D 

investments. 

Yet showing that knowledge diffusion is indeed at least partially localized has proven a 

challenge. In their seminal paper, Jaffe, Trajtenberg, and Henderson (1993) (henceforth JTH) use 

patent citations to measure knowledge flows, which up until that point had been considered to be 

unobservable. The premise behind this approach is that if an inventor cites a previous innovation, 

the inventor must have learned of the innovation.  

JTH test for the localization of knowledge flows by determining whether citing patents 

are disproportionately in the same geographic location as the cited patent. Because patents tend 

to primarily cite other patents in their same narrow technological area, appropriately controlling 

for the geographic agglomeration of technological activity is crucially important. Even in the 

absence of localized knowledge diffusion, it would not be surprising to observe Silicon Valley 

patents (many of which might be computer related) disproportionately citing other Silicon Valley 

patents, and Detroit patents (many of which might be automobile related) disproportionately 

citing other Detroit patents.  

JTH develop a technology classification-based case-control matching methodology 

precisely to address this concern. In particular, they control for the geographic agglomeration of 

technological activity by choosing for each citing patent a control patent with the same 

application year and technology class. Whether knowledge flows are localized is then 

determined by comparing the frequency with which the citing patent is in the same location as 

the cited patent against the frequency with which the control patent is in the same location as the 

cited patent. 
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However, as Thompson and Fox-Kean (2005) (henceforth TFK) have pointed out, the 

technology class may be too coarse a level at which to control because each class encompasses a 

broad set of different technologies (there are roughly 400 different technology classes). For 

example, since year 2000 more than half of all U.S. patents pertaining to computer processors 

(technology class 712) were generated in either San Francisco or Austin. But each region 

specializes in somewhat different aspects of computer processors; while San Francisco 

disproportionately specializes in processor architecture (subclasses 1 to 43), Austin 

disproportionately specializes in instruction dependency checking and monitoring (subclasses 

216 to 219). To the extent that patents tend to cite other patents that are most similar to 

themselves, we would expect San Francisco architecture patents to disproportionately cite other 

San Francisco architecture patents, even in the absence of knowledge flow localization. Thus, a 

comparison of the location match rate for the citing and cited patents against the location match 

rate for the control and cited patents could yield spurious evidence of localization. Moreover, 

these potential problems apply also to technology subclass-based analyses of localization. This 

drawback of classification-based delineation of the technology space has formed a key barrier to 

advances in this area. 

In this paper, we pursue an alternative way for identifying which patents are similar to 

one another and use this approach to conduct a re-analysis of the localization of knowledge 

flows. We first apply a machine learning algorithm to the text of patents to calculate the position 

of each patent in technology space. We then show that the proximity of any pair of patents in this 

technology space is correlated with other measures of similarity, such as whether the pair of 

patents share a class, subclass, cited patent, assignee, inventor, or location. We next examine 

heterogeneity among patents in the same technology class and subclass and show that even 

among patent pairs in the same class/subclass, those that are more proximate in technology space 

are also more likely to be in the same location. Such heterogeneity confirms that localization 

analyses that rely on patent classifications are likely to yield evidence of localization even when 

none exists. Hence, it is important to examine whether the localization hypothesis is still 

supported when control patents are chosen based on their technology space proximity to the 

citing patent. Our re-examination of knowledge flow localization continues to find support for 

the localization hypothesis, indicating that that bias inherent in earlier technology-classification 

based analyses was not the sole driver of the results. 
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Following JTH, many subsequent analyses have sought to apply and extend their 

approach, and our analysis contributes to this important strand of literature. TFK propose that the 

geographic distribution of technological activity could be better accounted for if control patents 

matched the citing patent at the much narrower level of the technology subclass (of which there 

are over 100,000) and find that this approach reduces the estimated degree of localization. Of 

course, as confirmed in our analysis, even at the subclass level the control patents do not 

adequately address the geographic distribution of technological activity. The subclass-based 

approach also suffers from an additional challenge: in many cases the subclasses are so narrowly 

defined that no admissible control patent exists. Such patents would necessarily be dropped from 

the analysis, and this could accentuate biases rather than alleviate them, as Henderson et al. 

(2005) have suggested. Our approach, by contrast, yields a control patent for every patent and is 

thus not subject to this selection bias. Moreover, our analysis yields an indication of how close 

the control patent is to the citing patent, allowing us to distinguish between cases where a close 

control patent is available and cases where one is not.  

A second concern raised by TFK is that patents generally have multiple technology 

classes and focusing on only the primary technology class may result in inadequate controls. 

Two computer processor patents may be very different if one is applied in the automobile sector 

and the other in biotech. A further advantage of our machine learning-based approach to 

delineating the technology space is that we allow the position of each patent to vary continuously 

along 300 dimensions. Hence the technology space position of each patent can reflect its 

characteristics on multiple dimensions.  

Murata et al. (2014) extend the JTH and TFK analyses in two ways. First, instead of 

comparing a dichotomous matching variable where the appropriate geographic unit of analysis is 

unclear, Murata et al. (2014) compare two spatial distance distributions: the geographic distance 

between citing and cited patent locations and the geographic distance between control and cited 

patent locations. They conclude that knowledge flows are localized in about 70% (30%) of 

technology fields when control patents are selected based on technology classes (subclasses). To 

maintain comparability with JTH, in our analysis we employ matching rate tests instead of the 

distance density tests employed by Murata et al. (2014).  

A second contribution of Murata et al. (2014) is to calculate how different control patents 

that do not share a technology subclass with the citing patent could be from the citing patent (in 
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terms of unobserved heterogeneity), in order for the results to still imply localized knowledge 

flows in the majority of the technology classes. They conclude that the technological exposure of 

a citing patent and any technology subclass-based control patent can be even 25 times higher 

than the technological exposure of a technology class-based control patent to the cited patent 

(here, technological exposure is calculated relative to the cited patent). While similar in spirit, 

our analysis of heterogeneity within patent classes is distinct from this analysis, for our approach 

provides a direct measure of how much heterogeneity there is within patent classes. 

As with most earlier studies of the localization of knowledge flows, we rely on patent 

citations. In addition to those already cited, such localization studies include Almeida & Kogut 

(1999), Verspagen and Schoenmakers (2004), Singh & Marx (2013), and Blit (2017). The use of 

citations to measure knowledge flows, however, is not uncontroversial. On the one hand, 

inventor surveys have shown that patent citations do capture knowledge flows, although not 

without noise (e.g. Jaffe et al. 2000; Duguet and MacGarvie 2005). On the other hand, the main 

purpose of citations is to limit the scope of the patent rather than identify idea inputs (e.g. Jaffe et 

al. 1993; Strumsky et al. 2012) and many citations are added by the patent examiner (Thompson 

2005; Alcacer and Gittelman 2006). Consequently, citations may simply indicate patents that are 

similar to the citing invention rather than prior work that the patent builds upon.1 While this is a 

worthwhile debate, we bypass it in this paper, and merely acknowledge that it presents an 

important caveat in the interpretation of our results and that of other papers that use patent 

citations to measure knowledge flow. 

As discussed, we differ from most of the prior literature on knowledge spillovers in that 

we identify control patents based on patent texts, whereas JTH and almost all other papers in this 

literature identify control patents based on the patent classification system. One salient exception 

is Thompson (2005) who uses examiner-added citations as controls. We recreate his analysis as 

one benchmark for our results. To the best of our knowledge, only Arts et al. (2018) have 

employed a text-matching-based approach to study the localization of knowledge flows. But 

while they employ a bag of words approach to determine similar patents, we use a neural 

                                                
1 Other important papers contributing to this debate include Roach and Cohen (2013), Moser et al. (2017), and Arora 
et al. (2018). Arora et al. (2018) compare the localization of citations to patents with earlier priority dates with that 
of citations to patents with later priority dates (which they argue cannot represent knowledge flows), and find that 
since both sets of citations display the same degree of localization, citations are unlikely to be a useful tool for 
examining the localization of knowledge flows. This finding presents an important potential caveat interpreting our 
and other citation-based analyses as evidence of knowledge flows. 
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network algorithm to calculate the vector space positions of documents. This neural network 

algorithm simultaneously places every patent document and every word that appears in patents in 

a vector space. A further point of departure with Arts et al. (2018) is that in addition to 

replicating the JTH localization analysis with the new control patents, we also examine 

heterogeneity within technology classes and subclasses. We also show that when vector space 

coordinates are used to select control patents for case-control matching rate analyses, several 

additional exclusion restrictions must be employed relative to the exclusion restrictions 

employed in JTH. Both our analysis and Arts et al. (2018) complement other analyses that have 

advanced the use of textual information in patent analyses (e.g. Younge and Kuhn 2016; 

Packalen and Bhattacharya 2012, 2015). 

The balance of the paper is organized as follows. The next section presents the data and 

the machine learning approach that we use to obtain a vector space representation of the 

technology space. Section 3 shows that proximity in this new technology space representation is 

linked with closeness in other dimensions such as whether a pair of patents shares a common 

technology class. Section 4 uses the new technology space representation to examine within 

patent class and patent subclass heterogeneity. Section 5 utilizes the new technology space 

representation to re-examine whether knowledge flows are localized, and section 6 concludes. 

 

 

2. Data and the Machine Learning Approach  
 

2.1 Patent Data 

 

Our raw data were retrieved from the USPTO’s PatentsView website and consist of all patents 

granted by the U.S. Patent and Trademark Office (USPTO) during 1975-2017. For each patent, 

we utilize the following fields: application year, location of each inventor, assignee, main 

technology class and subclass, citations to other U.S. patents, and the patent text (title, abstract, 

claims, summary, and descriptions of the drawings). We exclude from our sample the 14.2% of 

patents that, based on text comparisons, are likely to be continuation patents (Section 2.1.3 

discusses this in further detail). The resulting sample consists of 5,058,820 patents. 
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2.1.1 Sample Periods and Sample Sizes 

 

While we generate our technology space representation based on all patents granted during 1975-

2017, our localization analysis focuses on citing patents with application years 2001-2009 and 

cited patents with application years 1975-2009. We limit the analysis to citing patents with 

application years 2001 and later because data on whether a citation was added by the inventor or 

an examiner is only available from that year forward. We limit to citing patents with application 

years no later than 2009 to allow bechmarking with the JTH analysis.2 

 Our sample of 19,595,315 citing-cited patent pairs has 1,493,726 unique citing patents 

and 2,598,828 unique cited patents. This sample is used in our analyses in sections 3 and 4. For 

our localization analysis (section 5) we further restrict the sample to U.S. cited patents (as in 

JTH), which allows us to conduct state and MSA-level localization analyses. This U.S. sample 

has 13,169,144 citing-cited patent pairs,  

It is worth noting that in each of these two samples the same citing patent appears 

multiple times if it cites multiple cited patents. We refer to each such instance (corresponding to 

a cited-citing pair) as a citing patent instance. 

 

2.1.2 Patent Location 

 

We assign each patent to a unique location – country, state and Metropolitan Statistical Area 

(MSA) – based on the reported address of the inventors. When a patent has inventors from 

multiple distinct locations, the patent location is determined based on a majority rule (the 

country, state, or MSA with the most inventors listed on the patent residing there). When two or 

more locations are tied for the most inventors, we randomly assign the patent to one of the tied 

locations. 

 

2.1.3 Patent Text 

 

                                                
2 The USPC patent classifications used by JTH were discontinued for patents granted after 2014. Therefore, due to 
the delay between patent application and grant, patents with application years beyond 2009 often do not have a 
USPC patent class. 
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We generate the text string representing the content of each patent by concatenating the 

following text fields in order: title, abstract, claims, summary, and descriptions of the drawings. 

We remove from the resulting text string very common non-technical words (such as “there” and 

“within”) and words whose use is more likely to be linked to differences in patent jargon rather 

than differences in the technical nature of inventions (such words include “embodiment” and 

“apparatus”). We also apply a word stemming algorithm that changes words that are similar in 

terms of their meaning but have a different word ending. From the stemmed text strings, we then 

eliminate words that are the same as the preceding word and words that are mentioned fewer 

than 10 times in the corpus of patents. In the final text editing step, we select the first 1,000 

remaining words to represent the textual content of each patent.3 

For 14.2% of the patents in our patent data the first 50 characters of the constructed 

representative text string is identical to that of another patent with either an earlier application 

year or the same application year. When such “duplicates” are found, we exclude from the 

analysis all but the one with the earliest application year. In most such cases that we examined by 

hand, the duplicate patents were continuation patents.4  

 

 

2.2 The Machine Learning Approach for Constructing the Vector Space Representation of 

the Technology Space  

 

To estimate a vector space position for each patent document in the patent corpus we apply a 

recently developed machine learning approach. The algorithm that we employ is the distributed 

bag of words version of the Doc2Vec algorithm (Le and Mikolov 2014). We utilize the Gensim 

implementation of this algorithm (Rehurek and Petr 2010). 

The main purpose of the Doc2Vec algorithm is to produce a low-dimensional vector 

space representation for each document in a given corpus in such a way that the vector space 

                                                
3 For example, the edited text string for patent number 9,785,496 starts with “semiconductor die chip wafer measur 
enabl fill cell wafer multipl enabl open process manufactur semiconductor wafer chip die util electr measur fill cell 
structur configur target expos varieti short leakag excess resist failur mode process evalu design experi multipl enabl 
fill cell variant target failur mode multipl enabl detect open” (the complete string has 1,000 words).  
4 The inclusion of continuation patents as controls for the initial patent is not in the spirit of the analysis since they 
are effectively the same patent. If they were included in the localization analysis, the power of the case-control 
localization test would be lower because the identifying variation of the case-control test comes from the cases when 
the citing and control patents are from different locations. 
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positions of similar documents are near one another. The algorithm calculates a vector space 

representation also for each word that appears in the corpus based on which documents contain 

the word. Any pair of words that appear in similar contexts are placed near one another in the 

vector space. Though in our analysis we utilize only the vector space positions of the patent 

documents, the algorithm simultaneously calculates a vector space position also for each word, 

and thus the vector space positions of documents are in part based on the estimated vector space 

positions of words. 

While a corpus of texts may have millions of documents and tens of thousands or more 

distinct words, the Doc2Vec algorithm embeds each document in a low-dimensional vector 

space. In implementing the algorithm, the key choice parameter is the dimension of the vector 

space representation. Following other applications of the algorithm, we use it to estimate 300-

dimensional document vectors. The algorithm thus reduces the number of dimensions in which 

the documents differ to 300. This dimension reduction is conducted so that words that are 

distinct but likely have a related meaning (as they appear in similar contexts) have a similar 

influence on the vector space position of a document.   

The algorithm is a neural network with three layers. The first layer (the input layer) has 

one node representing each document in the corpus. The second layer (the hidden layer) has one 

node for each dimension of the vector space representation. Thus, in our application the number 

of nodes in the hidden layer is 300. The third layer (the output layer) has one node representing 

each distinct word in the corpus. 

The matrix of all estimated document vectors forms the link between the input layer and 

the middle layer. Given a corpus with D documents, and a selected dimension of the vector space 

representation of 300, the size of this “input vector” matrix is D×300. The matrix of all 

estimated word vectors in turn forms the link between the middle layer and the output layer. 

Given a corpus with V distinct words in it, the size of this “output vector” matrix is then 300×V. 

The input and output vector matrices that contain the document and word vectors form 

the parameters of the model that are estimated by the algorithm. The estimation is done by 

iterating over the corpus multiple times. We estimate these parameters using 20 iterations over 

the corpus. During each iteration, the parameters are adjusted based on one document at a time. 

For each document, the algorithm calculates a conditional probability for all the words in the 

corpus that appear in the document and also for some words that do not appear in that particular 
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document but do appear in other documents in the corpus. The corresponding document vectors 

and word vectors are then adjusted so that the conditional probability is high for all those words 

that actually appear in the document and low for those words that do not appear in the document. 

Following other applications that have employed the Doc2Vec algorithm, we measure the 

proximity of any two patents by the cosine similarity of their vector space representations. 

Cosine similarity of two vectors is calculated as the cosine of the angle between unit-normalized 

versions of the vectors. Cosine similarity is thus 0 for vectors that are orthogonal to one another, 

1 for vectors that have the exact same direction, and -1 for vectors that are diametrically opposed 

to one another. Larger values of this proximity measure indicate greater similarity. 

In the next section, we present some summary statistics of our proximity variable (cosine 

distance) and show that this variable correlates in expected ways with different patent pair 

characteristics. 

 

 

3. Distribution and Correlates of Proximity in the Vector Space  

 

3.1 Distribution of Proximity in the Vector Space 

 

We pair up each of the 19,595,315 citing patent instances in our full sample with a randomly 

chosen patent that has the same application year as the citing patent. This yields 19,595,315 

citing-random patent pairs. We then compute the proximity (cosine distance) of each pair. Figure 

1 shows the distribution (having mean 0.100 and standard deviation 0.058) of these proximities. 

The figure shows that the technology space locations of patents is neither degenerate (as the 

distribution is not degenerate) nor randomly dispersed throughout the vector space (as the 

distribution is not centered on zero).   

For each citing patent instance, we also determine which patent with the same application 

year is closest to it in the technology space, and then calculate the proximity (cosine distance) 

between the citing-closest patent pair. Figure 2 shows this distribution. There is considerable 

variation across citing patents in how near is their closest patent. The ability to determine not 

only the closest patent, but also how close it is, is an important feature of our approach, and one 
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that we will utilize in our localization analysis to show evidence of localization even in cases 

where close controls are available. 

 

 

3.2 Correlates of Proximity in the Vector Space 

 

We now examine the extent to which more proximate patents share characteristics that we might 

expect to be shared by patents that are similar. This analysis demonstrates that the vector space 

position of patents captures meaningful aspects of the technology space. 

One characteristic that more proximate patents in the vector space would be expected to 

share more often is the technology class that USPTO examiners have assigned to each patent. 

Figure 3 presents the relationship between a patent pair’s proximity (horizontal axis) and the 

likelihood that the two patents are in the same technology class (vertical axis). This figure is 

constructed based on the 19,595,315 citing patent instance-random patent pairs described above. 

While patent pairs that are far from one another are almost never in the same technology class, 

the fraction of patent pairs that are in the same technology class rises as the proximity of the 

patent pair increases. When the proximity of a patent pair in the vector space is above 0.4, the 

patents have the same technology class more than half the time. The vector space representation 

of the technology space thus has some overlap with the manually curated technology 

classification representation of the technology space; the machine learning algorithm is able to 

capture some of the characteristics of the technology space that human curators of the technology 

classification system have deemed important. 

Figure 4 shows the corresponding analysis in relation to the likelihood that the patents 

share a technology subclass. The results show that patents that are more proximate in the vector 

space are more likely to share also a technology subclass. Together, Figures 3 and 4 confirm that 

the vector space positions of patents reflect technological characteristics of patents rather than 

pure random variations.  

Figures 5 and 6 present the same relationship between patent pair proximity and 

likelihood of being in the same class/subclass where the sample is each citing patent instance 

paired with the closest patent having the same application year (as in Figure 2 above). Again, the 

frequency at which a patent pair is in the same technology class or technology subclass increases 
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with the patents’ proximity in the vector space. Visual inspection of pairs with proximities above 

about .8, suggests that one of the patents is often a (non-identical) continuation of the other, and 

it is thus not surprising that such patents are frequently in the same patent class. However, for 

most citing-closest patent pairs, the likelihood of being in the same technology class is well 

below 100%. The two approaches to delineating the technology space – the machine learning 

approach and the manually curated technology classification – thus result in two related but 

distinct representations of the technology space. While we are not in a position to evaluate which 

approach yields a better representation of the technology space, our results below (Section 4) 

show that there is considerable systematic heterogeneity among patents within the same 

technology class and subclass.  

To more formally evaluate the technology space mapping, we employ a regression 

analysis that examines whether patent pair proximity is correlated with a number of different 

characteristics that the pair of patents may share. In particular, for the 19,595,315 citing patent 

instance-random patent pairs described above, we regress the proximity variable on indicator 

variables that capture whether the two patents have a common technology class, technology 

subclass, assignee, inventor, backward citation, country, state, and MSA, and whether the two 

patents are linked by a cross citation between them.  

Table 1 presents the results. As shown in column 1, patents that share a patent class have 

on average 0.056 higher proximity (56% higher proximity than the mean of 0.10, or roughly one 

standard deviation (which is 0.058)). If in addition they share the same subclass, their proximity 

is on average a further 0.042 higher, so that patents pairs having the same class and subclass are 

1.7 standard deviations more proximate. The strongest relationships are with patent pairs having 

an inventor in common (0.105 higher proximity or 1.8 standard deviations) and having a cross-

citation between the pair (0.108 higher proximity or 1.9 standard deviations). Patent pairs with a 

common assignee and making a common backward citation also have higher proximity (0.037 

and 0.065, respectively).  

With respect to geographical location, the results suggest that controlling for the other 

patent pair characteristics, patent pairs from the same location are on average 0.012 more 

proximate (0.2 standard deviations), which breaks down as 0.007 more proximate if they are in 

the same country, an additional 0.001 if they are in the same state, and a further 0.004 if they are 

also in the same MSA. Conditional on country and MSA, whether patent pairs are from the same 
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state does not seem to be strongly related to proximity and is only significant at the 10% level. 

This is perhaps due to most states having only one or two cities with significant innovative 

activity and suggests that an MSA-level analysis of knowledge flow localization might be more 

informative than a state-level analysis. 

Columns 2 and 3 present the results when citing patent and random patent fixed effects, 

respectively, are added to the specification. The results are virtually unchanged. 

Overall, the results in Table 1 not only show that our proximity measure is correlated 

with patent characteristics in an expected way, they also show that even after controlling for 

whether two patents are in the same technology class and in the same technology subclass, the 

proximity of a patent pair is correlated with the pair being in the same geographical location. 

This suggests that technology class and technology subclass control matching approaches may 

not be enough to adequately account for the agglomeration of technological activity in 

localization analyses. We examine this more closely in the section that follows. 

 

 

4. Heterogeneity within Technology Classes and Subclasses  

 

The principal challenge in examining knowledge flow localization stems from the dual facts that: 

(1) similar patents tend to be co-located, and (2) patents tend to cite patents that are similar to 

themselves. When both of these conditions hold, patents will disproportionately cite other patents 

in the same location, even if knowledge flows are not localized. JTH put forward the technology 

class-based approach as an attempt to eliminate this potential source of bias.  

The extent to which technology class-based matching is successful in eliminating this 

potential source of bias depends on whether there is systematic heterogeneity within technology 

classes. TFK provided indirect evidence of significant heterogeneity within technology classes 

by showing that JTH results change if one selects control patents based on technology subclasses 

instead. By contrast, in this section we demonstrate directly that there is technological 

heterogeneity within technology classes (and subclasses). Specifically, we show that even when 

one compares patents in the same technology class (or in the same technology subclass), patents 

that are more proximate in the technology space are (1) more likely to be co-located, and (2) 

more likely to cite one another. 
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We begin by examining the extent to which more proximate patents are more likely to be 

in the same MSA, even when one limits comparisons to patents in the same technology class. We 

use the same sample of 19,595,315 citing patent instances as in the previous section. We first 

determine for each citing patent instance the distance to all other patents that have the same 

application year (as before) and main technology class, and order these by proximity. For each 

citing patent, we then select the closest and furthest such patents, and also patents that 

correspond to the 99th, 98th, 97th, 96th, 95th, 94th, 93rd, 92nd, 91st, 90th, 80th, 70th, 60th, 50th, 40th, 

30th, 20th, and 10th percentiles in terms of their vector space proximity to the citing patent 

instance. For example, when there are 400 patents with the same technology class and the same 

application year as a given citing patent, the fifth closest patent is the patent on the 99th 

percentile in terms of proximity and the 393rd closest patent is the patent on the 2nd percentile. 

Each citing patent instance is thus paired with 20 potential control patents that all share the same 

application year and technology class, but differ in their proximity to the citing patent.  

We next calculate, separately for each percentile, what fraction of citing patent and 

potential control pairs are in the same MSA. We refer to this frequency as the Citing-Control 

Location Match Rate. Figure 7 reports the Citing-Control Location Match Rate as a function of 

the technology space proximity percentile of the potential control patent. The horizontal axis thus 

reports the relative proximity between the citing patent and a potential control patent, and the 

vertical axis reports how often the potential control patent is from the same MSA as the citing 

patent. 

As shown in Figure 7, we observe significant variation in the Citing-Control Location 

Match Rate across the proximity percentiles, suggesting geographical clustering within 

technology classes. While 42% of the closest potential control patents are in the same MSA as 

the citing patent and 15% of potential control patents on the 90th percentile are in the same MSA 

as the citing patent, only 10% of the median potential control patents (50th percentile) are in the 

same MSA. Hence, even within technology classes, different geographical regions tend to 

specialize in different technological areas. Thus, the computer processor example mentioned in 

the introduction seems to be part of a systematic pattern. 

Figure 8 presents the corresponding analysis at the technology subclass level. That is, 

now all potential control patents for a citing patent must have the same application year and 

technology subclass as the citing patent. The pattern is similar but, perhaps not surprisingly, less 
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pronounced. For the closest potential control patents, 18% are in the same MSA as the citing 

patent, while the same fraction is 11% for the potential control patents on the 90th percentile, and 

only 7% for the median potential control patents. The geographic clustering of technology is 

evident even within technology subclasses. 

However, this presence of agglomeration within technology classes and subclasses is 

only problematic for case-control analyses of localization if in addition patents are more likely to 

cite other patents that are more similar to themselves (even after controlling for technology class 

or subclass). To examine this possibility and the extent to which different control patent selection 

approaches resolve it, we compare the distribution of the vector space proximity between cited 

and citing patent pairs against four other distributions: (1) proximity between cited patents and 

random control patents with the same application year as the citing patent, (2) proximity between 

cited patents and random control patents with the same technology class and application year as 

the citing patent (the JTH control patent), (3) proximity between cited patents and random 

control patents with the same technology subclass and application year as the citing patent (the 

TFK control patent), and (4) proximity between cited patents and patents with the same 

application year as the citing patent that are most proximate to the citing patent (our machine 

learning-based control patent).  

Figure 9 presents our results. It is evident from the difference between the citing-cited 

proximity and random control-cited proximity distributions that patents tend to cite patents that 

are similar to themselves (as citing-cited pairs are much closer than random control-cited pairs). 

Moreover, the difference between the citing-cited proximity distribution and technology class 

control-cited proximity distribution is large, indicating that even among patents in the same 

technology class, patents tend to cite patents that are more similar to themselves. The subclass 

control-cited proximity distribution is closer to that of the citing-cited distribution, but there 

remains a large difference between them. The only proximity distribution that in any way 

resembles that of the citing-cited is the closest control-cited proximity distribution. This, coupled 

with our earlier finding of agglomeration within technology classes and subclasses, highlights 

the fact that the machine learning approach that we utilize to identify the closest control has the 

potential to yield much more effective controls than even the technology subclass-based 

approach.  
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We further examine within technology class and subclass heterogeneity in a regression 

framework similar to that of section 3.2. The only distinction is that, whereas in that earlier 

analysis we paired each citing patent instance with a random patent with only the same 

application year as the citing patent, we now pair each citing patent instance with a random 

patent with the same application year and the same technology class as the citing patent. We 

regress the vector space proximity of these patent pairs on the same patent pair characteristics as 

before to determine whether even among patent pairs in the same class, proximity is correlated 

with variables such as whether there is a citation link between the patents and whether they are in 

the same location. We also conduct the corresponding subclass-level analysis, pairing each citing 

patent instance with a random patent with the same application year and technology subclass as 

the citing patent. 

Table 2 shows the results. Columns 1-3 show that for patent pairs with the same 

application year and technology class, being more proximate in the vector space is correlated 

with having the same subclass, the same assignee, the same inventor, a cross-citation, a common 

citation, the same country, the same state, and the same MSA. Columns 4-6 in turn show that the 

same holds for patent pairs that are from the same technology subclass. Consistent with the 

results shown in Figures 7-9, there is systematic heterogeneity within both technology classes 

and subclasses. 

This systematic heterogeneity within technology classes and subclasses raises the concern 

of possible bias in localization analyses that employ technology classes or subclasses to select 

control patents. Even when the null hypothesis of no localization holds, such analyses are likely 

to find that the cited and citing patents are from the same location more often than the cited and 

control patents. Hence, it is important that we re-examine whether knowledge flows are localized 

using our machine learning based approach to select control patents. 

 

 

5. Re-Examination of Localization of Knowledge Flows 

 

5.1 Localization Methodology 
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Our analysis of localization of knowledge flows utilizes the case-control methodology of JTH. 

As in JTH, we begin with a set of cited patents and find the set of patents that cite these. As 

discussed above in section 2.1.1, we restrict the set of cited patents to U.S. patents to obtain a 

sample of 13,169,144 citing-cited patent pairs. As in JTH, we further exclude those citing-cited 

pairs for which the assignees of the two patents are the same, as such patents do not reflect 

external knowledge flows. This yields a sample of 12,169,144 citing-cited patent pairs. 

The most critical step in the case-control approach is the selection of the control patents. 

Our re-analysis of localization differs from JTH in how the control patent is selected. For each 

cited-citing pair, JTH identify the control patent based on the application year, technology class, 

and grant date of the citing patent. Specifically, in their approach, the control patent must (1) 

share the same 3-digit technology class and application year as the citing patent and (2) not cite 

the cited patent. If multiple such patents exist, the control is chosen from among these as the one 

whose grant date is closest to that of the citing patent.  

Following JTH, we also consider as admissible control patents only those patents that 

share the same application year as the citing patent and do not cite the cited patent. From this set 

of admissible control patents, we select as the control patent the patent whose machine learning 

determined position in the vector space representation of the technology space is closest to the 

vector space position of the citing patent. This generates a set of cited-citing-control patent 

triplets that are used to calculate two location match rates: (1) the fraction of citing and cited 

patents that are in the same location, and (2) the fraction of control and cited patents that are in 

the same location. We refer to the former fraction as the Citing-Cited Location Match Rate and 

the latter fraction as the ML Control-Cited Location Match Rate. Whether knowledge flows are 

localized is revealed by a comparison of these two matching rates. Under the null hypothesis of 

no localization in knowledge flows, the two matching rates are equal, provided that the control 

patent properly accounts for technological agglomeration. By contrast, under the alternative 

hypothesis of localized knowledge flows, the location match rate is greater for the citing-cited 

pair than it is for the control-cited pair.5  

                                                
5 The identifying variation of this matching rate test comes from those cases for which the citing and control patents 
are in different locations. Hence, when geographical agglomeration of inventive activity is extreme, so that the 
control patent is always in the same location as the citing patent, the matching rate test has no statistical power. 
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The above approach for choosing the control patent based on the citing and control 

patents’ technology space coordinates is our baseline specification. While this is the most 

straightforward recreation of the JTH methodology in the technology space context, our 

preferred specification makes three additional restrictions on the set of admissible control 

patents. First, to ensure that continuation patents of the citing patent are not being selected as the 

control, we exclude from the set of admissible control patents those patents that have at least one 

inventor in common with the citing patent. Second, we exclude from the set of admissible 

control patents those patents that have the same assignee as the cited patent. Since citing-cited 

patent pairs with a common assignee were removed from the analysis from the outset (so as to be 

able to interpret the results as evidence of localization of knowledge flows external to the firm), 

this additional exclusion ensures that the two location matching rates retain similar distributions 

under the null hypothesis of no localization in knowledge flow. Third, we exclude from the set of 

admissible control patents any patents that have the same assignee as the citing patent. Not only 

will such patents almost always be in the same location as the citing patent (reducing the power 

of the test), but even in cases where they are in different locations choosing same-firm controls is 

problematic due to the presence of intra-firm knowledge flows. For example, as Blit (2017) 

shows, the citation (knowledge flow) could occur not because the citing patent is in the same 

location as the cited patent (i.e. due to knowledge flow localization), but because the citing firm 

has a satellite R&D centre in the location of the cited patent (i.e. due to intra-firm knowledge 

flows). In the extreme, if knowledge flows perfectly within the firm, any patent of the firm is just 

as likely to be citing the cited patent regardless of location and if we allowed controls to have the 

same assignee as the citing patent, we may not find knowledge localization even when it in fact 

exists.  

In summary, in this preferred specification for selecting control patents, patents in the 

admissible control patent set satisfy the following five conditions: (1) they have the same 

application year as the citing patent, (2) they do not cite the cited patent, (3) they do not have any 

inventors in common with the citing patent, (4) they do not have the same assignee as the cited 

patent, and (5) they do not have the same assignee as the citing patent. By contrast, in the 

baseline specification, we only employ restrictions (1) and (2).  
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Having identified the admissible control patent set, in this preferred specification we then 

again select as the control the patent whose technology space position is closest to the 

technology space position of the citing patent.  

 To benchmark our results, we also calculate the location matching rates when the control 

patent is chosen based on the technology class of the citing patent (the JTH approach) and when 

the control patent is chosen based on the technology subclass of the citing patent (the TFK 

approach). In addition, we calculate location match rates also for the case where the control 

patent is chosen randomly from among all patents with the same application year as the citing 

patent; this approach corresponds to the case when one does not try to control for geographic 

agglomeration of technological activity. Finally, we also estimate the degree of localization by 

comparing the fraction of inventor-added citing patents that are in the same location as the cited 

patent with the frequency of examiner-added citing patents that are in the same location as the 

cited patent; this approach follows the methodology put forward in Thompson (2006). 

 

 

5.2 Localization Results 

 

We begin with the results averaged across all citing-cited patent pairs. Further below, we then 

take advantage of the fact that our approach allows us to distinguish between those citing-cited 

patent pairs for which a close control patent is found versus those citing-cited patent pairs for 

which even the closest control patent is far from the citing patent in technology space. 

The first two columns of Table 3 show the results for our baseline and preferred 

specifications, respectively. Across the three panels, the Citing-Cited Location Match Rate and 

the Control-Cited Location Match Rate as well as their difference and statistical significance are 

shown for three levels of location: Country (top panel), State (middle panel), and MSA (bottom 

panel). For both the baseline and preferred specifications (columns 1 and 2, respectively) the 

results suggest some degree of knowledge flow localization at all three levels of location. 

To benchmark our results, columns 3 to 5 show the corresponding results for the TFK 

approach in which the control patent is chosen to match the technology subclass of the citing 

patent (column 3), for the JTH approach in which the control patent is chosen to match the 

technology class of the citing patent (column 4), and for the approach in which the control patent 
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is chosen randomly from patents that have the same application year as the citing patent (column 

5). As expected, the Citing-Cited Location Match Rate is relatively stable across the columns, 

with the small differences being due to slightly different samples due to cases where no 

appropriate control was available. The sample is most different (about 10% smaller) for the TFK 

(subclass) controls in column 3, and consistent with the aforementioned sample selection 

concern, the Citing-Cited Location Match Rate is somewhat larger across all three panels.  

As expected, across all three panels, the Control-Cited Location Match Rate drops 

significantly from left to right, suggesting that our proximity controls do best at controlling for 

agglomeration, followed by the TFK (subclass) controls, and finally the JTH (class) controls, 

which do better than not controlling at all. 

Column 6 presents the results for the Thompson (2006) approach that compares the 

location match rate of inventor-added citations to that of examiner-added citations. Here again 

we find evidence of localization since the inventor-added citations are significantly more likely 

to be in the same location as the patent they are citing, than are the examiner-added citations. Not 

surprisingly, the reported %Citing matching (which more accurately for this column is the 

inventor-added citations location match rate) is higher than the same row in other columns, since 

for the other columns the reported number is the fraction of all citing patents (both inventor and 

examiner added) that are in the same location as the cited patent. That is, for each panel, the first 

row of the other columns is a mix of the match rates for the inventor-added and examiner-added 

citations (the first two rows) in column 6. 

If indeed only inventor-added citations represent actual knowledge flows and the data on 

the source of the citation is accurate, we may want to perform the entire analysis solely on the set 

of inventor-added citations. Table 4 presents the corresponding results for this case when the 

analysis is restricted to cited-citing patent pairs where the citation was added by the inventor. As 

would be expected since these represent actual knowledge flows, the Citing-Cited Location 

Match Rate and the computed location matching rate differences are now somewhat larger. 

However, qualitatively the results remain similar to those reported in Table 3. Since inventor-

added citations are more likely to represent actual knowledge flows, the remainder of the 

analysis focuses on the subsample of citations that were made by inventors. 

In both Tables 3 and 4, in all cases the difference between the Citing-Cited Location 

Match Rate and the Control-Cited Location Match Rate is positive and significant, providing 
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support for the localization hypothesis, at least for those approaches for which one believes that 

the selected control patents properly account for agglomeration. However, there is cause to be 

concerned that even for our proximity controls, this result could potentially be driven by the 

subset of citing-cited pairs where a close control was not available. Fortunately, our approach 

allows us to not just identify the nearest control patent but to also compute how close that nearest 

control patent is to the citing patent. This enables us to perform separate location matching rate 

comparisons for those cases where the nearest control patent is relatively close to the citing 

patent (and hence appropriate controls for the agglomeration of technological activity) and for 

those cases where the nearest control patent is relatively far from the citing patents. 

Figure 10 reports the results of such an analysis for our baseline specification and 

focusing only on inventor-added citations to U.S. patents. The figure shows both Citing-Cited 

Location Match Rate and the ML Control-Cited Location Match Rate as a function of the 

technology space proximity between the citing patent and the control patent. As a benchmark, 

the figure shows also the location match rate between the cited patent and the JTH control patent 

as well as the location match rate between the cited patent and a control patent chosen randomly 

from patents with the same application year. Because the technology space proximity is 

calculated using the cosine distance metric, larger values of the proximity measure indicate 

patent pairs that are closer to one another in the technology space. 

The results shown in Figure 10 suggest that when the control patent better accounts for 

technological agglomeration (in that the control patent is close to the citing patent in the 

technology space) the hypothesis of localized knowledge flows is no longer supported, as there is 

no discernible difference between the Citing-Cited Location Match Rate and the ML Control-

Cited Location Match Rate for values of proximity above 0.6. However, the significance of this 

finding is limited for two reasons. First, particularly for proximity values of 0.7 and greater, 

many of the control patents are slightly modified continuation patents of the citing patent, and 

thus almost by definition they will be in the same location as the citing patent. In addition, many 

control patents will also have the same assignee as the citing patent and thus will also mostly be 

in the same location as the citing patent. It is thus not surprising that the two matching rates 

would be practically the same in this range; the result is merely due to the low power of the test 

when the citing and control patent tend to be in the same location often. Second, while we drop 

citing-cited pairs for which the assignee is the same in the citing and cited patents, in our 
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baseline specification we do not exclude from the set of admissible controls patents that have the 

same assignee as the cited patent. This likely generates upward bias in the ML Control-Cited 

Location Match Rate relative to the Citing-Cited Location Match Rate. 

Before proceeding to the corresponding figure for our preferred specification, we note 

that Figure 10 also shows that except in the relatively rare cases where the most proximate 

control patent is far to the citing patent (proximity values less than 0.4), the location match rate 

between the cited patent and a technology class-based control patent (JTH approach) is lower 

than that for our proximity-based control. Lowest of all, is the location match rate between the 

cited patent and the random control. This pattern is consistent with our machine learning 

determined control patents generally being more effectively controls than the JTH control patents 

which only partially account for technological agglomeration. 

Figure 11 shows the matching rates as a function of the citing-control proximity for the 

preferred specification. The preferred specification addresses these aforementioned issues by 

excluding from the set of admissible control patents three types of patents: (1) any patent that has 

an inventor in common with the citing patent, (2) any patent that has the same assignee as the 

cited patent, and (3) any patent that has the same assignee as the citing patent. For low and 

moderate proximities (proximities below 0.6) the result is clear: Citing-Cited Location Match 

Rate is higher than the ML Control-Cited Location Match Rate, indicating that there is 

localization in knowledge flow.  

For high proximities (proximities above 0.6) it is difficult to see much difference between 

the two matching rates. This is due in part to the matching rates becoming noisy due to the 

relatively small number of citing instances for which an admissible control with that high 

proximity was available (the number of citing instances with proximity of 0.6 is 4953, with 

proximity 0.7 is 963, and with proximity 0.8 is 245). In addition, because cases with high citing-

control proximities represent a tiny fraction of the 7,889,133 total observations we should be 

concerned about selection. A closer look at the ML control-citing patent pairs for proximities of 

.6 or higher reveals that more than 60% of control patents are in the same MSA as their 

associated citing patent. Visual inspection of the most proximate citing and control patent 

assignee names reveals that more than half of citing and controls have the same effective 

assignee (in spite of patents with the same assignee as the citing patent not being admissible 
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controls in our preferred specification) due to imperfect disambiguation of assignee names 

(misspellings, short forms of names, etc.) and subsidiary-parent company relationships.  

For robustness, since one cannot rely on the disambiguated assignee id alone, we repeat 

the analysis, imposing an additional restriction that control patents cannot have more than a 100 

character text fragment overlap with the citing patent. This restriction takes advantage of the fact 

that assignees often use similar legal jargon in their patents (especially in the background 

section). Figure 12 shows the matching rates as a function of the citing-control proximity for the 

preferred specification with this additional restriction. The Citing-Cited Location Match Rate is 

now clearly higher than the ML Control-Cited Location Match Rate even when the control patent 

is close to the citing patent in technology space. 

Tables 5 and 6 present a similar analysis to Figures 11 and 12, respectively, but for the 

country, state, and MSA level of analysis. Given that the cases where the control patent is closest 

to the citing patent most effectively account for the technological agglomeration of technological 

activity, we present the Citing-Cited Location Match Rate and the ML Control-Cited Location 

Match Rate for different percentiles of cases with the most proximate citing and control patents.  

Table 5 presents the results for our preferred specification and for only the inventor-

added citations to U.S. patents. As would be expected, we generally find that the more proximate 

the controls (the higher the citing-control proximity subsample), the higher fraction of controls 

that match the location of the cited patent.  The difference between Citing-Cited Location Match 

Rate and the ML Control-Cited Location Match Rate decreases as we analyse higher percentiles 

but remains significant in all cases but the 0.1% of the sample with most proximate controls for 

the country and state level analyses. While it is tempting to conclude that there is no evidence for 

localization at the level of the country and the state, since for the cases with the best controls to 

account for technological agglomeration we can no longer reject the null that there is no 

localization, a more conservative interpretation is that these results are likely due to selection 

issues and/or the aforementioned loss of power due to imperfect assignee disambiguation and 

subsidiary-parent company relationships. The large jumps in the Citing-Cited Location Match 

Rate across subsamples indeed suggests that the smaller samples may not be directly comparable 

to the overall sample. Moreover, when we introduce the additional restriction that control patents 

that have more than a 100 character text fragment overlap with the citing patent are not 

admissible controls, our analysis strongly rejects the null hypothesis of no localization even for 
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the sample of 0.1% most proximate control patents, and at each of the country, state, and MSA 

level (see Table 6). 

The balance of evidence thus leads us to reject the null hypothesis that there no is 

localization in knowledge flow. Though this finding comes with three important qualifications. 

First, when utilizing the case-control approach for studying knowledge flow localization, the 

results are always dependent on the assumption that the chosen control patents properly account 

for agglomeration. We, of course, cannot be certain that our approach fully controls for this. Our 

analysis has, however, moved the literature forward in this respect by demonstrating that the 

substantive results obtained in earlier, technology classification-based analyses, are robust to 

using our alternative (and arguably better), machine learning-based delineation of the technology 

space for the analysis of localization. 

Second, while our results are very clear when averaged across all citing patent instances, 

as the average results indicate that there is localization, our results are slightly murkier for the 

cases where a very close control patent for the citing patent instances can be found, particularly 

for the country and state level analyses. We do not, however, believe these results of no 

localization to be particularly robust, as it is a very small subsample and in addition we find 

strong evidence of localization when we impose the additional restriction of no 100-character 

string overlap between the control and citing patents. Clearly, however, further research is 

warranted. Perhaps more advanced machine learning tools would be able to find even closer 

control patents for a broader set of patents which would help bring certainty to this important 

question.  

Third, as mentioned in the introduction, much doubt remains about the suitability of 

using patent citations to study knowledge flows (e.g. Arora et al 2018) and we sidestepped this 

important debate. Instead, our focus was on constructing the new machine learning delineated 

vector space representation of the technology space and on applying it to re-examine some of the 

highest profile contributions in the economics of innovation literature. 

 

 

6. Conclusion 
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Localization of knowledge spillovers are a key potential driver of agglomeration and remain a 

key focus in innovation policy. Many cities and regions strive to create innovation clusters where 

inventors have the opportunity to learn from each other, with the hopes of enhancing the region’s 

economic prosperity. Given their potential importance, knowledge spillovers have deservedly 

received a lot of attention from innovation scholars. 

Previous empirical studies have generally supported the conclusion that knowledge flows 

are localized to a significant degree. However, concerns over the methodology used in these 

analyses has cast a shadow over their substantive implications and practical relevance. The 

fundamental assumption in the case-control methodology employed in these analyses is that one 

is able to identify which patents are comparable to one another in order to properly account for 

geographic agglomeration of different types of inventive activities. However, the existing 

technology classification-based approach for delineating the technology space has been seen as 

inadequate in this respect. For if there is technological heterogeneity within technology classes 

and subclasses and this heterogeneity is correlated with the geographical locus of innovation, the 

case-control approach will yield biased estimates of localization.  

In this paper, we have explored a new approach for delineating the technology spaced. 

We first showed that the position of each patent in the technology space can be determined using 

the recently developed Doc2Vec machine learning algorithm. We applied this algorithm to the 

text of more than 5 million patents to compute the position of each patent in a 300-dimensional 

vector space. We showed that the proximity of a pair of patents in this vector space is correlated 

with other measures of patent similarity, including having a common technology class, subclass, 

cited patent, inventor, assignee and location. Having shown that the machine learning approach 

captures meaningful aspects of the technology space, we utilized the new technology space 

representation to evaluate the extent of technological heterogeneity within patent classes and 

patent subclasses. Our findings showed that technology is geographically agglomerated even 

within patent classes and patent subclasses. An important implication of such systematic 

heterogeneity within patent classes and patent subclasses is that technology class and technology 

subclass-based analyses of knowledge flows can yield spurious evidence of localization.  

Our re-examination of the knowledge flow localization hypothesis utilized the vector 

space representation of the technology space to identify a control patent for each citing patent in 

order to account for agglomeration. The results continue to provide support for the localization 
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hypothesis. Thus, the bias inherent in technology class- and subclass-based localization analyses 

was not the sole driver of the results. Our machine learning based approach places these findings 

on a firmer footing and thereby contributes to the important academic and policy discussion on 

knowledge flow localization. We hope that our exploration of the new machine learning 

approach sparks further research that utilizes this and related tools in the study of knowledge 

flow localization and the economics of innovation more generally. 
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Tables and Figures 
 
Figure 1: Distribution of proximity for citing and random patent pairs. 

 
Notes: Each of the 19,595,315 citing patent instances in our sample is paired with a random patent with the same 
application year as the citing patent. Proximity is measured as the cosine distance (rounded to the nearest 0.01) 
between the citing-random patent pairs. 
 
Figure 2: Distribution of proximity for citing and closest patent pairs. 

 
Notes: Each of the 19,595,315 citing patent instances in our sample is paired with the closest patent having the same 
application year as the citing patent. Proximity is measured as the cosine distance (rounded to the nearest 0.01) 
between the citing-closest patent pairs.  
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Figure 3: Probability that citing patent and random patent are in the same technology class, by 
patent pair proximity. 

 
Notes: Fraction of citing-random patent pairs having a given proximity (as measured by cosine distance) that share 
the same technology class. Proximity values with at least 50 patent pairs are reported. Sample is the same 
19,595,315 citing-random patent pairs as in Figure 1. 
 
 
Figure 4: Probability that citing patent and random patent are in the same technology subclass, 
by patent pair proximity. 

 
Notes: Fraction of citing-random patent pairs having a given proximity (as measured by cosine distance) that share 
the same technology class and subclass. Proximity values with at least 50 patent pairs are reported. Sample is the 
same 19,595,315 citing-random patent pairs as in Figure 1. 
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Figure 5: Probability that citing patent and closest patent are in the same technology class, by 
patent pair proximity. 

 
Notes: Fraction of citing-closest patent pairs having a given proximity (as measured by cosine distance) that share 
the same technology class. Sample is the same 19,595,315 citing-closest patent pairs as in Figure 2. 
 
Figure 6: Probability that citing patent and closest patent are in the same technology subclass, by 
patent pair proximity. 

 
Notes: Fraction of citing-closest patent pairs having a given proximity (as measured by cosine distance) that share 
the same technology class and subclass. Sample is the same 19,595,315 citing-closest patent pairs as in Figure 2. 
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Figure 7: Probability that citing patent and control patent are in the same location when control 
patent is chosen from the same technology class, by proximity of control patent  
 

 
 
Notes: Horizontal axis captures proximity of citing patent instance and a potential control patent. Vertical axis 
captures fraction of citing and potential control patents that are from the same MSA. Each citing patent instance is 
paired with the closest patent, the furthest patent, and the patent at each reported proximity percentile, from among 
all patents sharing the same application year and same technology class as the citing patent. Sample consists of 
19,595,315 citing patent instances and their potential controls at each of the computed percentiles.  
 
Figure 8: Probability that citing patent and control patent are in the same location when control 
patent is chosen from the same technology subclass, by proximity of control patent 
 

 
 
Notes: See notes to Figure 7.  In contrast with analyses for Figure 8, where control patents have the same technology 
class as the citing patent, here all control patents have the same technology class and subclass as the citing patent.  
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Figure 9: Distribution of proximity to cited patent for citing and four different control patents. 

 
 
Notes: Distribution of proximity (cosine distance) is reported for five different patent pairs: cited-citing, cited-
closest control, cited-technology subclass control, cited-technology class control, and cited-random control. Sample 
consists of 19,595,315 citing patent instances and their controls.   
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Figure 10: Location match rate at MSA-level for the baseline specification, by proximity of 
citing patent and closest control patent. 

 
Notes: Vertical axis captures fraction of patent pairs (citing-cited, closest control-cited, technology class control-
cited, and random control-cited) that are in the same MSA. Horizontal axis captures proximity between the citing 
patent and the closest control patent. Proximity is rounded to the nearest 0.01. Blue circles represent the MSA match 
rate between the citing and cited patents. Red diamonds represent MSA match rate between cited and closest control 
patent. Green squares represent MSA match rate cited and control chosen randomly from patents with the same 
technology class as citing patent. Orange triangles represent MSA match rate between cited patent and control 
chosen randomly from patents with same application year as citing patent. Sample consists of 7,806,934 inventor-
added citations to U.S. patents and their associated cited and control patents. 
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Figure 11: Location match rate at MSA-level in the preferred specification, by proximity of 
citing patent and closest control patent. 
 

 
Notes: See notes to Figure 10. In contrast with the baseline specification analyses shown in Figure 10, in the 
preferred specification three additional restrictions are imposed when the closest control patent is determined: the 
control patent cannot have the same inventor as the citing patent, the control patent cannot have the same assignee as 
the cited patent, and the control patent cannot have the same assignee as the citing patent. Sample consists of 
7,889,133 inventor-added citations to U.S. patents and their associated cited and control patents. 
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Figure 12: Location match rate at MSA-level for the preferred specification with no 100-
character overlap, by proximity of citing patent and closest control patent. 
 

 
Notes: See notes to Figure 10. Figure is for the preferred specification with the additional restriction that control 
patents that have more than a 100 character text fragment overlap with the citing patent are not admissible controls.  
Sample consists of 7,050,019 inventor-added citations to U.S. patents and their associated cited and control patents. 
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Table 1: Relationship between patent pair proximity and patent pair characteristics 
 
Dependent Variable: Proximity of patent pair 
 (1) (2) (3) 
Same technology class 0.056*** 

(0.003) 
0.055*** 
(0.003) 

0.055*** 
(0.002) 

Same technology subclass 
 

0.042*** 
(0.004) 

0.039*** 
(0.004) 

0.039*** 
(0.004) 

Same assignee 0.037*** 
(0.001) 

0.033*** 
(0.001) 

0.034*** 
(0.001) 

Common inventor 0.105*** 
(0.008) 

0.108*** 
(0.008) 

0.106*** 
(0.008) 

Citation between pair 0.108*** 
(0.018) 

0.109*** 
(0.019) 

0.109*** 
(0.017) 

Common citation 0.065*** 
(0.001) 

0.066*** 
(0.001) 

0.065*** 
(0.002) 

Same country 0.007*** 
(0.000) 

0.009*** 
(0.000) 

0.009*** 
(0.000) 

Same State 0.001* 
(0.000) 

0.001*** 
(0.000) 

0.000 
(0.000) 

Same MSA 0.004*** 
(0.001) 

0.004*** 
(0.000) 

0.004*** 
(0.000) 

    
Citing patent FE No Yes No 
Random patent FE No No Yes 
    
R-squared 0.0148 0.1202 0.1280 
Number of observations 19,332,013 19,332,013 19,332,013 

Notes: Ordinary least squares regressions with robust standard errors clustered by citing patent technology class. An 
observation is a citing patent instance that is paired with a random patent with the same application year as the citing 
patent. The dependent variable is the proximity (cosine distance) between the two patents. Sample is constructed 
from citations made from patents filed between 2001 and 2009 to patents granted between 1976 and 2017 that have 
application year 1976-2009. Asterisks indicate statistical significance: * = p<0.1, ** = p<0.05, *** = p<0.01. 
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Table 2: Regression analysis of patent pair proximity and patent pair characteristics, for patent 
pairs with same application year and either the same technology class (columns 1-3) or the same 
technology subclass (columns 4-6). 
 
Dependent Variable: Proximity of patent pair 
 Same Technology Class Same Technology Subclass 
 (1) (2) (3) (4) (5) (6) 
Same technology 
     subclass 

0.043*** 
(0.002) 

0.041*** 
(0.002) 

0.043*** 
(0.002) 

   

Same assignee 0.047*** 
(0.003) 

0.039*** 
(0.002) 

0.047*** 
(0.003) 

0.068*** 
(0.004) 

0.059*** 
(0.005) 

0.068*** 
(0.004) 

Common inventor 0.171*** 
(0.014) 

0.176*** 
(0.013) 

0.171*** 
(0.014) 

0.228*** 
(0.006) 

0.212*** 
(0.006) 

0.228*** 
(0.006) 

Citation between 
      pair 

0.074*** 
(0.018) 

0.074*** 
(0.019) 

0.074*** 
(0.017) 

0.047*** 
(0.008) 

0.045*** 
(0.007) 

0.047*** 
(0.008) 

Common citation 0.061*** 
(0.002) 

0.053*** 
(0.002) 

0.062*** 
(0.002) 

0.060*** 
(0.002) 

0.040*** 
(0.001) 

0.060*** 
(0.002) 

Same country 0.013*** 
(0.001) 

0.015*** 
(0.000) 

0.013*** 
(0.001) 

0.013*** 
(0.001) 

0.016*** 
(0.001) 

0.013*** 
(0.001) 

Same State 0.001* 
(0.001) 

0.002*** 
(0.000) 

0.001* 
(0.001) 

0.004** 
(0.002) 

0.005*** 
(0.002) 

0.004** 
(0.002) 

Same MSA 0.006*** 
(0.001) 

0.005*** 
(0.001) 

0.006*** 
(0.001) 

0.021*** 
(0.003) 

0.016*** 
(0.002) 

0.021*** 
(0.003) 

       
Citing patent FE No Yes No No Yes No 
Random patent FE No No Yes No No Yes 
       
R-squared 0.1159 0.3465 0.1893 0.4788 0.7333 0.5267 
Number of obs. 19,331,144 19,331,144 19,331,144 17,447,618 17,447,618 17,447,618 

Notes: See notes to Table 1. In contrast with analyses reported in Table 1, where each citing patent was paired with 
random patent with the same application year as the citing patent, here each citing patent is paired with a random 
patent that also has the same technology class (columns 1-3) or same technology subclass (columns 4-6) as the 
citing patent.  
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Table 3. Geographic matching frequencies for different choices of control patents.  

 

 (1) (2) (3) (4) (5) (6) 
 Proximity: 

Baseline 
Specification 

Proximity: 
Preferred 

Specification 

Technology 
Subclass 

Technology 
Class 

Random Examiner 
Citations 

       

Country Matches       
% Citing Matching 77.2% 77.3% 77.6% 77.3% 77.3% 84.7% 
% Controls Matching 70.5% 67.2% 59.4% 53.6% 47.2% 59.8% 
Difference 6.7% 10.1% 18.2% 23.7% 30.1% 24.9% 
t-statistic 374.43 555.72 921.77 1254.47 1598.86 868.67 
N 11,866,932 11,987,380 10,682,467 11,910,921 11,985,058 12,052,531 
       
State Matches       
% Citing Matching 13.7% 13.8% 14.0% 13.8% 13.8% 15.7% 
% Controls Matching 10.4% 8.8% 8.0% 5.9% 4.0% 9.5% 
Difference 3.2% 5.0% 6.0% 7.9% 9.8% 6.2% 
t-statistic 243.37 388.86 447.08 652.78 857.07 311.60 
N 11,866,932 11,987,380 10,682,467 11,910,921 11,985,058 12,052,531 
       
MSA Matches       
% Citing Matching 10.2% 10.3% 10.5% 10.3% 10.3% 11.7% 
% Controls Matching 7.3% 5.9% 5.4% 3.7% 2.2% 6.9% 
Difference 2.9% 4.4% 5.1% 6.6% 8.2% 4.8% 
t-statistic 238.22 383.36 421.15 612.09 811.22 265.92 
N 11,092,075 11,207,673 10,021,286 11,133,581 11,205,411 11,269,142 
Notes: Matching percentage refers to the fraction of citing-cited and control-cited patent pairs that are in the same 
country (top panel), state (middle panel), or MSA (bottom panel). Sample consists of citations made from patents 
filed between 2001 and 2009 to patents with a U.S. inventor that were granted between 1976 and 2017 and have 
application year 1976-2009. In each column each citing patent instance is paired with a different control patent: 
closest patent from our baseline specification (column 1), closest patent from our preferred specification, which 
imposes the additional restrictions that control patent cannot have same inventor as citing patent or same assignee as 
cited or citing patents (column 2), random patent with the same technology subclass as citing patent (column 3), 
random patent with same the same technology class as citing patent (column 4), and random patent with the same 
application year as the citing patent (column 5). Column (6) compares inventor and examiner added citations as in 
Thompson (2006).  
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Table 4: Geographic matching frequencies for different choices of control patents: inventor 
citations only. 
 

 (1) (2) (3) (4) (5) (6) 

 Proximity: 
Baseline 

Specification 

Proximity: 
Preferred 

Specification 

Technology 
Subclass 

Technology 
Class 

Random Examiner 
Citations 

       

Country Matches       
% Citing Matching 84.7% 84.7% 84.9% 84.7% 84.7% 84.7% 
% Controls Matching 75.7% 71.5% 61.0% 54.3% 47.1% 59.8% 
Difference 9.0% 13.2% 23.8% 30.4% 37.6% 24.9% 
t-statistic 463.04 663.86 1083.49 1432.56 1772.37 868.67 
N 8,325,110 8,410,745 7,572,145 8,365,222 8,413,445 12,052,531 
       
State Matches       
% Citing Matching 15.5% 15.7% 15.8% 15.7% 15.7% 15.7% 
% Controls Matching 11.5% 9.5% 8.3% 6.0% 4.0% 9.5% 
Difference 4.0% 6.2% 7.4% 9.6% 11.7% 6.2% 
t-statistic 241.56 381.74 447.59 641.21 817.35 311.60 
N 8,325,110 8,410,745 7,572,145 8,365,222 8,413,445 12,052,531 
       
MSA Matches       
% Citing Matching 11.6% 11.7% 11.8% 11.7% 11.7% 11.7% 
% Controls Matching 8.1% 6.4% 5.6% 3.8% 2.2% 6.9% 
Difference 3.5% 5.4% 6.2% 7.9% 9.6% 4.8% 
t-statistic 234.08 373.04 415.96 593.37 759.26 265.92 
N 7,806,934 7,889,133 7,121,193 7,844,948 7,891,549 11,269,142 
Notes: See notes to Table 3. In contrast with the analyses in Table 3, the sample is now limited to inventor-added 
citations only (except in column 6 which is reproduced from Table 3 for comparison). 
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Table 5: Geographic matching frequencies for preferred specification, inventor citations, and 
subsamples with closest controls 
 

 (1) (2) (3) (4) (5) (6) 

Percentage of Sample 
 

Proximity Values 

50% 
 

≥ 0.38 

10% 
 

≥ 0.44 

1% 
 

≥ 0.54 

0.7% 
 

≥ 0.57 

0.4% 
 

≥ 0.61 

0.1% 
 

≥ 0.74 

       

Country Matches       
% Citing Matching 85.3% 84.7% 88.1% 89.6% 90.1% 91.7% 
% Controls Matching 74.1% 75.7% 83.3% 87.3% 88.8% 91.2% 
Difference 11.2% 8.9% 4.8% 2.3% 1.3% 0.5% 
t-statistic 392.62 136.59 30.73 11.78 5.55 1.14 
N 3,908,601 731,194 100,443 53,296 34,549 8636 
       
State Matches       
% Citing Matching 16.7% 17.6% 17.8% 17.9% 17.2% 13.0% 
% Controls Matching 11.0% 12.6% 14.4% 15.6% 15.7% 12.3% 
Difference 5.7% 5.0% 3.4% 2.3% 1.5% 0.8% 
t-statistic 230.56 85.51 20.47 10.08 5.37 1.49 
N 3,908,601 731,194 100,443 53,296 34,549 8636 
       
MSA Matches       
% Citing Matching 12.5% 13.1% 13.4% 13.7% 12.9% 10.2% 
% Controls Matching 7.6% 9.0% 11.2% 12.3% 12.3% 8.9% 
Difference 4.9% 4.1% 2.3% 1.4% 0.6% 1.4% 
t-statistic 222.96 76.83 15.04 6.53 2.48 2.92 
N 3,684,170 691,281 95,241 50,448 32,633 8033 
Notes: Sample consists of citations made by inventors (examiner-added citations are excluded) on patents filed 
between 2001 and 2009 to patents with a U.S. inventor that were granted between 1976 and 2017 and have 
application year 1976-2009. The “% Controls Matching” reports the fraction of control-cited patent pairs that are in 
the same country (top panel), state (middle panel), or MSA (bottom panel), where the control patent is chosen as the 
closest patent to the citing patent in our preferred specification (as in Column 2 in Tables 3 and 4). The different 
columns correspond to different subsamples. In particular, we report the results for the 50%, 10%, 1%, 0.7%, 0.4%, 
and 0.1% of the subsample with most proximate controls to the citing patent, which correspond to proximity values 
of 0.38, 0.44, 0.54, 0.57, 0.61, 0.74, and above, respectively. 
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Table 6: Geographic matching frequencies for preferred specification with no 100-character 
overlap, inventor citations, and subsamples with closest controls 
 

 (1) (2) (3) (4) (5) (6) 

Percentage of Sample 
 

Proximity Values 

50% 
 

≥ 0.38 

10% 
 

≥ 0.43 

1% 
 

≥ 0.50 

0.7% 
 

≥ 0.51 

0.4% 
 

≥ 0.53 

0.1% 
 

≥ 0.58 

       

Country Matches       
% Citing Matching 84.9% 83.9% 78.7% 76.6% 74.7% 76.8% 
% Controls Matching 71.0% 70.3% 65.9% 65.3% 63.7% 63.1% 
Difference 13.9% 13.6% 12.7% 11.4% 10.9% 13.8% 
t-statistic 438.09 224.11 58.88 38.14 26.80 16.19 
N 3,301,023 933,164 84,225 45,711 25,270 5676 
       
State Matches       
% Citing Matching 16.3% 17.0% 17.0% 17.1% 17.5% 20.7% 
% Controls Matching 9.7% 10.5% 10.2% 10.2% 10.1% 12.9% 
Difference 6.6% 6.5% 6.8% 6.9% 7.4% 7.8% 
t-statistic 252.68 128.75 41.08 30.48 24.39 11.11 
N 3,301,023 933,164 84,225 45,711 25,270 5676 
       
MSA Matches       
% Citing Matching 12.3% 12.9% 13.8% 14.6% 15.6% 17.1% 
% Controls Matching 6.7% 7.4% 7.9% 8.4% 8.3% 9.8% 
Difference 5.6% 5.5% 5.9% 6.2% 7.3% 7.3% 
t-statistic 239.55 121.84 38.12 28.81 24.89 11.14 
N 3,112,406 883,272 80.040 43,454 24,073 5344 
Notes: See notes for Table 5. Control patents are chosen according to the preferred specification with the additional 
restriction that control patents that have more than a 100 character text fragment overlap with the citing patent are 
not admissible controls. The different columns correspond to different subsamples. In particular, we report the 
results for the 50%, 10%, 1%, 0.7%, 0.4%, and 0.1% of the subsample with most proximate controls to the citing 
patent, which correspond to proximity values of 0.38, 0.43, 0.50, 0.51, 0.53, 0.58, and above, respectively. 
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Appendix A: Sample Patents and Computed Proximity 

 

By way of example, we present a patent and then three other patents that are similar, somewhat 

similar, and dissimilar.  Our patent of interest (#5,215,930) is a method for etching an integrated 

circuit.  The second patent below (#5,607,543) also covers a process for etching an integrated 

circuit and not surprisingly we compute the proximity between the first and second patents to be 

0.96.  The third patent (#5,338,750) is also a method for fabricating an integrated circuit, though 

it is not specific to etching.  Its proximity to the first patent is 0.72.  The last patent (#5,624,563) 

is a process for the treatment of sludge water and is not at all related to the first patent.  Our 

computed proximity to the first patent is 0.14. 
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