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1. Introduction

As Segal and Whinston (2007) aptly pointed out, “over the last two decades a large share
of the economy — the so-called ‘new economy’ — has emerged ... in which innovation is
a critical determinant of competitive outcomes and welfare.” A salient feature of many of
these industries is the presence of a dominant firm: examples include IBM in the 1980s;
Microsoft in the 1990s; Google and Facebook in the 2000s; and Intel since the 1980s.
In these industries, the distinction between technology leadership and market leadership
becomes relevant. For example, while Intel is clearly the market leader in the microprocessor
industry (in terms of production capacity, brand recognition, and so forth), there have been
times when AMD has taken the technology lead (in terms of processor speed, for example).

An additional salient feature of many of these industries is the phenomenon of technol-
ogy transfer — typically by acquisition — which assures the industry leader remains on
the technology edge: a significant number of today’s most popular and successful products
originated with smaller companies which were later gobbled up by one of the big play-
ers. A very partial list includes Google acquiring Applied Semantics (Adsense), Android
and YouTube; Microsoft acquiring Hotmail and Forethought (Powerpoint); and Facebook
acquiring Instagram.

In this setting, two natural questions arise. First, does firm dominance (as in the
examples considered above) enhance or hinder innovation? Second, does technology transfer
(as in the examples considered above) enhance or hinder innovation? In this paper, I tackle
these questions by developing a model of innovation competition with (a) a dominant and a
fringe firm; (b) the possibility of technology transfer; and (c) the explicit distinction between
incremental and radical innovation.

I define a dominant firm as a one that, for a given technology level, receives greater
market payoffs (because, for example, it possesses complementary assets that enhance the
value of its technology). Regarding innovation, I assume drastic innovation allows a firm
to become the new dominant firm (or keep that position, as the case may be); whereas
incremental innovation allows a firm to become a technology leader, within a given dominant
firm / fringe firm setting.

I consider an infinite-period innovation game where, in each period, firms (a) receive
product market payoffs according to the current industry and technology state; (b) simulta-
neously choose (at a cost) probabilities of incremental (x) and drastic (y) innovation; and (c)
observe the result of their innovation efforts, which in turn leads to a change in state. There
are four possible firm states, the cartesian product of industry state (dominant/fringe) and
technology state (leader/laggard).1

My first set of results deals with the effect of firm dominance on innovation incentives
absent the possibility of technology transfer. In this regard, the work by Schumpeter and
many other scholars suggests an ambiguous answer: large, dominant firms such as AT&T
have been responsible for an important share of innovation during the 20th century; but
many new products and services have emerged from small, fringe firms in fragmented in-
dustries.

I provide sufficient conditions such that, as the degree of industry dominance increases,

1. As in Aghion et al. (1997) and Segal and Whinston (2007), the latter may be understood as the
reduced form of a quality-ladder model with imitation (so that the technology laggard can always
move one step behind the technology leader).
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the rate of incremental innovation decreases, while the rate of radical innovation increases.
The intuition for the latter result is fairly straightforward: increasing the degree of industry
dominance increases the prize from becoming a dominant firm, which in turn translates into
a greater effort towards radical innovation. In this sense, increasing the degree of industry
dominance has an effect similar to an increase in the value of a patent (e.g., an increase in
patent length or breath).

The intuition for a decrease in incremental innovation is more complex as there are
two effects of opposite sign. First, the dominant firm’s incentives increase, as the value of
a technology improvement is greater for a bigger firm (a version of the so-called “Arrow”
effect; see Arrow, 1962). By the same token, the fringe firm’s incentives decrease as its rival’s
dominance increases (the “shadow of Google” effect). Moreover, convexity of the market
profit function (which I assume) implies that, from a static point of view, the encouragement
effect is greater than the discouragement effect. A priori, this would suggest a positive net
effect; however, in the steady-state the net effect is negative. The reason is that, precisely
because the dominant firm is very eager to innovate when it is a technology laggard, the
likelihood of being in a state when the industry leader is a technology laggard decreases, so
that the dominant-firm encouragement effect is given lower weight.

I next consider the impact of technology transfer. I change the timing of the game by as-
suming that, in each period, after the outcomes from innovation efforts have been observed,
firms have the ability to negotiate a transfer of technology: by paying a transfer price p,
the technology laggard becomes a technology leader. I assume efficient bargaining, which
implies technology transfer takes place when the industry leader is a technology laggard. I
provide sufficient conditions such that technology transfer implies a trade-off between incre-
mental and drastic innovation: compared to the equilibrium with no technology transfer,
incremental innovation increases but radical innovation decreases.

The intuition for the increase in incremental innovation is that technology transfer im-
plies that the fringe firm partly internalizes the dominant firm’s value from incremental
innovation (“innovation for buyout” effect). The intuition for the decrease in drastic in-
novation is that technology transfer partly levels the equilibrium values of dominant and
fringe firms, thus reducing the prize for drastic innovation (“complacency” effect).

Finally, I provide sufficient conditions such that, with technology transfer, an increase
in industry dominance results in an increase in both incremental and drastic innovation.
Regarding incremental innovation, the intuition is that, because the fringe firm partly in-
ternalizes the dominant firm’s value from incremental innovation (“innovation for buyout”
effect), the discouragement effect previously considered turns into an encouragement effect:
the benefits of competing against a big rival decrease as the rival becomes bigger, but the
benefits of selling out to a big rival increase as the rival becomes bigger. Regarding dras-
tic innovation, the intuition is similar to the case when technology transfer is absent: an
increase in industry dominance increases the prize from innovation.

Literature review. The literature on innovation is fairly extensive. Reinganum (1989)
provides an excellent survey of the work up to the 1980s, including several papers that I will
refer to later in the paper. Broadly speaking, the theoretical literature can be classified into
three groups. First, one-race timing models such as Loury (1979), Lee and Wilde (1980)
or Reinganum (1983). Second, one-race contest models such as Futia (1980), Gilbert and
Newbery (1982). And finally, infinite contests (also know as ladder models) such as Harris
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and Vickers (1987), Aoki (1991), Budd, Harris and Vickers (1993) or Hörner (2004).
Of the more recent literature, Segal and Whinston (2007) is particularly germane. They

“study the effects of antitrust policy in industries with continual innovation.” Specifically,
they consider antitrust policy that changes the relative payoffs of technology leader and
laggard. Like them, I find that “conflicting effects” are present in the comparative dynamics
analysis of changes in α, the parameter that measures (inversely, in my case) the intensity
of antitrust policy. Three important differences of my paper with respect to theirs are that
(a) I assume an asymmetric set up where one of the firms is a dominant firm; (b) I consider
the possibility of firm acquisition, namely acquisition of a technology leader by a market
leader; and (c) I distiguish between incremental and drastic innovation; in fact, one of the
important results I develop refers precisely to the trade-off between incremental and drastic
innovation.

Aghion et al. (2005) “find strong evidence of an inverted-U relationship between product
market competition and innovation.” To the extent that an increase in dominant firm’s
dominance brings industry structure closer to the monopoly extreme, my results provide
reasonable conditions under which market power diminishes the overall innovation rate,
consistently with Aghion et al. (2005). However, I also provide conditions under which the
opposite is true.

My paper is related to a recent literature focusing on technology transfer and markets
for technology. Arora et al. (2001) and Gans and Stern (2003) identify the central drivers
leading a start-up to either directly commercialize or sell its innovation. They show that
one important condition is the efficiency of the “market for ideas.” By contrast, I consider
the extreme cases when technology transfer is and is not possible. Gans and Stern (2000)
analyze the relationship between incumbency and R&D incentives in a framework that
combines elements of Gilbert and Newbery (1982) and Reinganum (1983). A key feature
of their framework, which I ignore in the present paper, is the possibility of the incumbent
threatening to engage in imitative R&D during negotiations for technology transfer.2 Spul-
ber (2013) studies markets for technology. He argues that competitive pressures increase
incentives to innovate. This is consistent with my result regarding the effect of firm domi-
nance on incremental innovation incentives. However, I consider a world where technology
transfer results from bilateral negotiation between innovators/competitors, whereas he con-
siders a market for inventions that brings together innovators and competitors. Also related
to the issue of technology transfer, Phillips and Zhdanov (2013) “show theoretically and
empirically how mergers can stimulate R&D activity of small firms.” Although the context
of their model is different from mine, my Lemma 3 is consistent with their theoretical and
empirical results.

Finally, a related strand of the literature is that dealing with cumulative innovation,
including Scotchmer (1991), Green and Scotchmer (1995), and Scotchmer (1996).These pa-
pers model cumulative innovation as a two-stage sequence of early and then later innovators.
As such, it does not take into account that the technology leaders of today may become
technology laggards tomorrow.3

The above papers share some of the features of the framework I develop in this paper.

2. See also Gans et al. (2002).
3. The first line in the paper’s title is motivated by Scotchmer’s (1991) use of Newton’s famous adage,

as well as Audretsch’s variation applied to SBIR, a federal program designed to help small high-tech
firms.
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Figure 1
State space and state transitions
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However, to the best of my knowledge, mine is the first infinite-period innovation model to
address simultaneously the issues of firm dominance and technology transfer.4

The rest of the paper is organized as follows. Section 2 introduces the model and
assumptions. Section 3 presents the results in the case when technology possible is not
possible. The technology transfer case is considered in Section 4. Section 5 concludes the
paper.

2. Model and assumptions

Consider an industry with two firms and an infinite series of periods t = 1, 2, .... In each
period, there is a market dominant firm, which I denote by the subscript M ; and a fringe
firm, which I denote by the subscript m. As well, there is a technology leader, which I
denote by the subscript T ; and a technology laggard, which I denote by the superscript t.
The cartesian product of these two pairs of possibilities induces four possible states for each
firm: {MT,Mt,mT,mt}, as illustrated by Figure 1.

At the beginning of each period, firms receive product market profits determined by
their state: πik, where i ∈ {M,m} and k ∈ {T, t}.5 Next firms simultaneously spend
C(xik) and D(yik) to achieve incremental innovation probability xik and drastic innovation
probability yik. Finally, Nature determines the outcome of the innovation investments and
next period’s state is determined. Specifically, I make the following assumptions regarding
state transitions:

• If a firm is successful in drastic innovation, then it becomes a dominant firm and a
technology leader; if both firms are simultaneously successful in drastic innovation,
then the previously dominant firm remains dominant.

• If a firm is successful in incremental innovation (and no firm is successful in drastic
innovation), then such firm becomes a technology leader; if both firms are simul-

4. There are some additional related papers, including Goettler and Gordon (2011), Hermalin (2013),
Rasmusen (1988), that I will refer to later in the paper.

5. Goettler and Gordon (2011) develop a dynamic innovation model and estimate it with data from
the personal computer microprocessor industry. A key distinctive feature of their model with
respect to mine (and most of the innovation literature) is that they consider the implications of
product durability for strategic decisions by buyers. By assuming state-dependent profit values πik I
effectively abstract from issues of durability and strategic buyers.
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taneously successful in incremental innovation, then the previous technology leader
remains a technology leader.

Figure 1 shows the four possible firm states as well as the possible state transitions (denoted
by arrows). For example, a transition from state mt to state mT takes place if and only if
(a) no radical innovation takes place; (b) the technology laggard incrementally innovates,
whereas (c) the technology leader does not. This implies that the probability of moving
from state mt to state mT is given by

P(mT |mt) =
(
1− yMT

)(
1− ymt

) (
1− xMT

)
xmt

The probability of remaining in state MT requires that either (a) the market dominant firm
has a drastic innovation; or (b) no firm has a drastic innovation and it is not the case that
the technology laggard uniquely incrementally innovates. This implies that the probability
of moving from state MT to state MT is given by

P(MT |MT ) = yMT +
(
1− ymt

)
(1− yMT )

(
1− xmt

(
1− xMT

))
The probability of moving from state MT to state mt is is the probability that the laggard
drastically innovates but the leader does not:

P(mt |MT ) =
(
1− yMT

)
ymt

And so forth. With these transition probabilities at hand, I can derive the firms’ value
functions vik recursively. For example,

vMT = πMT − C(xMT )−D(yMT ) + δ yMT vMT + δ
(
1− yMT

)
ymt vmt

+ δ
(
1− ymt

)(
1− yMT

)(
xmt

(
1− xMT

)
vMt +

(
1− xmt

(
1− xMT

))
vMT

)
I look for symmetric Markov equilibria, defined by firm strategies (xik, yik) and value func-
tions vik that satisfy the Bellman optimality principle. For example, in state

xMT = C̆
(
δ
(
1− ymt

)(
1− yMT

)
xmt (vMT − vMt)

)
yMT = D̆

(
δ ymt (vMT − vmt) + δ

(
1− ymt

)
xmt

(
1− xMT

)
(vMT − vMt)

)
where C̆ and D̆ are the inverse of C ′ and D′, respectively.

Innovation rates. From a firm’s point of view, there are four different states. From
society’s point of view, however, there are only two different states. Specifically, denote by
1 the state when the market leader is also the technology leader; and by 0 the state when
the market leader is the technology laggard. Incremental and drastic innovation rates at
each state are given by

X1 = 1−
(
1− xmt

) (
1− xMT

)
X0 = 1−

(
1− xmT

) (
1− xMt

)
Y1 = 1−

(
1− ymt

) (
1− yMT

)
Y0 = 1−

(
1− ymT

) (
1− yMt

) (1)
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For example, X1 is the complement of the probability that no firm innovates, that is,(
1− xmt

) (
1− xMT

)
, when we are in state M (the market leader is also the technology

leader).
Let ms be the probability of transition to state s, where s = {0, 1}; and let µ be the

steady-state probability of being in state 1. Then the steady-state innovation rates are
given by

X ≡ µX1 + (1− µ)X0

Y ≡ µY1 + (1− µ)Y0

(2)

The focus of the paper is precisely on understanding the comparative statics of X and Y ,
the steady-state rates of incremental and drastic innovation, respectively.

Functional-form assumptions. In an effort to make my results as little dependent on
functional forms as possible, I make relatively minimal assumptions regarding functional
forms. First, I make the following assumption regarding the cost functions C(x), D(y):

Assumption 1. (a) C(x), D(y) are of class C3; (b) C(0) = D(0) = 0; (c) C ′(0) = D′(0) =
0; (d) C ′′(x), D′′(x) > 0; (e) lim

x→1
C ′(x) = lim

y→1
D′(x) =∞

For simplicity, I will use the notation φC ≡ 1/C ′′(0) and φD ≡ 1/D′′(0). These parameters
measure how easy it is to induce incremental and drastic innovation, respectively. Consider
for example φC . By part (c) of Assumption 1, some positive incremental-innovation effort
is optimal. If C ′′(0) is very high, then φC is very low: as x increases, the marginal cost of
incremental innovation increases very rapidly. We thus expect the optimal value of x to be
lower (all else equal). The same reasoning applies to φD and the optimal level of y.

Regarding product market payoffs, I make the following assumptions:

Assumption 2. πiT > πit

In words, technology leadership is profitable, regardless of whether a firm is market domi-
nant or not (as indicated by i ∈ {M,m}). Finally, the next assumption puts some meat on
the concept of market dominance. Specifically, suppose that the parameter α measures the
degree of market dominance, as follows:

Assumption 3. (a) π
ik

= π
jk

if α = 0; (b) π
Mk

is increasing in α and πmk is decreas-
ing in α; (c) (πMT − πMt) is increasing in α and (πmT − πmt) is decreasing in α; (d)∣∣ d (πMT − πMt

)
/dα

∣∣ >
∣∣ d (πmT − πmt) /dα ∣∣

(Not all conditions not necessary for all of the results that follow.)

Numerical computation. The dynamic game under consideration is highly non-linear,
and admits no general closed-form analytical solution. My strategy is to linearize the system
of value functions and first-order conditions around δ = 0. Since I can easily solve for the
unique equilibrium when δ = 0 and show that the implicit function theorem applies at δ = 0,
I can apply Taylor’s theorem and obtain analytical results valid for the unique equilibrium
in the neighborhood of δ = 0. I then use numerical methods to solve the model for higher
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values of δ and confirm that the analytical results obtained in the neighborhood of δ = 0
extend (in a qualitative sense) to higher values of δ.6

For the purpose of numerical computation, I assume the cost functions are given by

C(x) = γC
(
− ln(1− x)− x

)
D(y) = γD

(
− ln(1− y)− y

)
These functional forms have the desirable properties that marginal cost is zero at zero
innovation probability and infinity at probability-one innovation probability.

Regarding the product market functions, I consider the following product market model.
There exists a continuum of consumers (normalized to a measure 1), each of whom buys
one unit from firm M or from firm m. Specifically, each consumer receives net utility ui
from purchasing from firm i (i = M,m):

ui = λi + αi − pi + ζi (3)

where λi denotes firm i’s technology leadership, αi denotes firm i’s industry leadership,
pi is firm i’s price, and ζi is the consumer’s utility shock from buying firm i’s product.
Specifically, λi = λ if firm i is the technology leader, λi = 0 otherwise; and similarly, αi = α
if firm i is the industry leader (that is, i = M), αi = 0 otherwise.

Suppose ζi is sufficiently large that the market is covered, that is, the outside option is
always dominated by either firm M or firm m. Given that, I work with ξ ≡ ζi − ζj , the
consumer’s relative preference for firm i. I further assume ξi is distributed according to a
normal N(0, σ2); and, with no further loss of generality, assume σ2 = 1.

It can be shown that the above functional forms satisfy Assumptions 1–3.

3. Results

As I mentioned earlier, while a general analytical solution to the model is not possible, I
am able to characterize the dynamic system in the neighborhood of δ = 0 (cf Budd et al.,
1993).

Lemma 1. In the neighborhood of δ = 0 and for i ∈ {M,m}, k ∈ {T, t},

x
ik
≈ φC (πiT − πik)

y
ik
≈ φD(πMT − πik)

where the difference between the approximation and the exact value is of order O(δ2).

Lemma 1 implies that xiT ≈ 0 and yMT ≈ 0. The intuition for this is to be found in
the well-known replacement effect in innovation games (Arrow, 1962; Reinganum, 1983).
Consider for example the case of incremental innovation. If δ ≈ 0, then the likelihood
that a firm innovates is small. For a technology leader, this implies that the benefits from
innovation are very small: the most likely event is that, if the technology leader innovates,
it will replace a leadership position with another leadership position. A similar reasoning
applies to drastic innovation.

6. As often is the case with this type of models, I have no analytical uniqueness result. I try multiple
starting values and convergence algorithms and always obtain the same equilibrium.
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Figure 2
Firm dominance and innovation
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Lemma 2. In the neighborhood of δ = 0,

X ≈
(ymT + xMt) xmt +(ymt + xmt) xMt

ymt + xmt + ymT + xMt

Y ≈
(ymT + xMt) ymt +(ymt + xmt) ymT

ymt + xmt + ymT + xMt

where the difference between the approximation and the exact value is of order O(δ2).

Lemmas 1 and 2 allow me to characterize the impact of firm dominance on incremental and
drastic innovation. Part of the next result depends on the condition that

(πMT − πMt)
2 d(πmT − πmt)

dα
+(πmT − πmt)

2 d(πMT − πMt)

dα
< 0 (4)

While I have not been able to find general results regarding this condition, all functional
forms I have considered satisfy it (including, in particular, normal and uniform preference
shocks).

Proposition 1. There exists a δ such that, if δ < δ, then

• There exists a φ
C

such that, if φC < φ
C

, then the steady-state incremental-innovation
rate, X, is decreasing in the degree of market dominance α if and only if (4) holds.

• There exist a φ
D

such that, if φD > φ
D

and δ < δ, then the steady-state radical-
innovation rate, Y , is increasing in the degree of market dominance α.

Note that the above (analytical) result is only valid in the neighborhood of δ = 0. Figure 2
plots the value of X and Y as a function of α for higher values of δ. The numerical results
confirm the signs predicted by Proposition 1.

The intuition for the first part of Proposition 1 proceeds in three steps. First, if δ is
small then the replacement effect is very strong for technology leaders: since equilibrium
innovation rates are small, the most likely outcome of innovation for a technology leader is
to stay in the same position: its innovation will be imitated by the rival and the distance
between technology leader and technology laggard remains fixed. Given this replacement
effect, the relevant innovation incentives correspond to those of technology laggards.

8



Figure 3
Encouragement and discouragement effects (δ = .1)

0.00

0.05

0.10

0.15

0.0 0.5 1.0

X1 , XMt

α

X0

X
1

1
2

(
X

0
+X

1

)

0.06

0.07

0.08

0.0 0.5 1.0

X

α

X |µ = 1
2

X

Second, the innovation incentives for a technology laggard are proportional to πiT −πit .
Not only is this greater for the market dominant firm, but also it increases with α at a
higher rate for the market dominant firm. This follows from convexity of product-market
profits and corresponds to the intuition that a market dominant firm has more to gain
from innovation (that is, the combination of market dominance and technology dominance
is supermodular). In other words, the encouragement effect of market dominance (market
leader has a lot to gain) outweighs the discouragement effect of market dominance (market
laggard has little to gain).

Third, along the steady-state the probability that the market leader is the technology
laggard decreases as α increases. In words, because of the previous effect (encourage-
ment/discouragement effect), the weight placed on the encouragement effect decreases and
the weight placed on the discouragement effect increases. In fact, the steady-state proba-
bility attached to the state where the market leader is the technology leader is proportional
to the market leader’s innovation probability when a technology laggard.

Finally, the “intensive margin” and the “extensive margin” effects work in opposite
ways in terms of the steady-state innovation probability. For normal and uniform preference
shocks, it can be shown that the “extensive margin” effect dominates, so that the innovation
probability declines.

To put it differently, differentiating the first equation in (2) with respect to α we get

dX

dα
= µ

dX1

dα
+ (1− µ)

dX0

dα︸ ︷︷ ︸+
dµ

dα

(
X1 −X0

)
< 0 > 0 > 0 < 0

In the neighborhood of δ = 0, the first two terms on the right-hand side have opposite sign.
The positive term outweighs the negative one, so the net sum is positive. However, the
third term is negative and outweighs the net sum of the first two terms.

Figure 3 restates the same ideas in a different way. The left panel shows how X0 and X1

vary with respect to α. As mentioned earlier, an increase in firm dominance (and increase
in α) implies an encouragement effect (higher effort when industry leader is a technology
laggard, which corresponds to an increase in X0); but it also implies a discouragement effect
(lower effort when fringe firm is a technology laggard, which corresponds to a decrease in
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X1). If we give both effects equal weight, they approximately cancel out, so as shown by
the left panel (if δ = 0, then they exactly cancel out).

However, for positive values of δ and as α increases, the equilibrium weight placed on
X0 becomes lower, whereas the equilibrium weight placed on X1 becomes higher; and the
net effect is negative. The right panel in Figure 3 illustrates this phenomenon. If we fix
the steady-state probability of states X0 and X1 to be 1

2 , then an increase in α leads to an
increase in X. However, if we take into account the endogenous change in µ the effect on
X of an increase in α is negative.

4. Technology transfer

A significant number of today’s most popular and successful products originated with
smaller companies which were later gobbled up by one of the big players (Google, Mi-
crosoft, Yahoo, IBM, Oracle, etc). A very partial list includes Google acquiring Applied
Semantics (Adsense), Android and YouTube; Microsoft acquiring Hotmail and Forethought
(Powerpoint); and Facebook acquiring Instagram. These examples motivate a natural ques-
tion: how are innovation incentives shaped by the possibility of innovator acquisition? And
given that firm acquisition is possible, how does an increase in market dominance affect
industry innovation incentives?

I now change the model to allow for the possibility of technology transfer. Specifically,
I assume that, after innovation outcomes are known and before the next period begins,
firms Nash bargain over transfer of technology (that is, bargaining is efficient and the gains
from an agreement are equally split among the two parties).7 Efficient bargaining implies
that technology transfer takes place if and only if the sum of the two firms’ value functions
increases as a result of technology transfer. This happens in state 0 but not in state 1.

Let p be the transfer price in state 0. Nash bargaining implies that transfer price is
given by

max
p

(vMT − p− vMt) (vmt + p− vmT )

which implies
p̂ = 1

2(vMT − vMt + vmT − vmt)

Let uik be the firm interim value just before technology transfer negotiations take place.
We then have

umT = vmt + p̂

uMt = vMT − p̂

and uik = vik for all other values of i, k.
The value functions are similar to the case of no technology transfer. The main difference

is that, when the innovation outcome shows the dominant firm as technology laggard, we

7. I am particularly interested in examining the effects of technology transfer on innovation incentives.
For this reason, I consider a rather simple model of technology transfer. Hermalin (2013) models
explicitly the relation between buyer and seller when there is asymmetric information and moral
hazard.
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use uik as continuation value, rather than vik. For example,

vMT = πMT − C(xMT )−D(yMT ) + δ yMT vMT + δ
(
1− yMT

)
ymt vmt

+ δ
(
1− ymt

)(
1− yMT

)(
xmt

(
1− xMT

)
uMt +

(
1− xmt

(
1− xMT

))
vMT

)
where

uMt = vMT − p̂ = 1
2 (πMT + πMt − πmT + πmt)

Lemma 3. In the neighborhood of δ = 0 and for i, j ∈ {M,m}, k, ` ∈ {T, t}, j 6= i, ` 6= k,

x
ik
≈ 1

2 φC (πMT + πmT − πMk
− π

mk
)

y
ik
≈ 1

2 φD
(
πMT − πmt − πik + π

j`

)
where the difference between the approximation and the exact value is of order O(δ2).

Let ∆xik be the difference in xik between the cases with and without technology transfer
when δ ≈ 0, likewise for ∆yik. Lemmas 1 and 3 imply

∆xit ≈ 1
2 φC (πMT + πmT − πMt − πmt)− φC (πiT − πit) = 1

2 φC
(
πjT − πiT + πit − πjt

)
where ≈ means that the difference with respect to the actual values is of the same order as
δ2. Assumption 3 implies that

∆xMT ≈ ∆xmT ≈ 0

∆xmt ≈ 1
2 φC (πMT − πMt)− 1

2 φC (πmT − πmt) > 0

∆xMt ≈ −∆xmt < 0

In words, the prospect of technology transfer increases the fringe firm’s incremental inno-
vation incentives and decreases the dominant firm’s incentives by approximately the same
amount. Similar computations establish that

∆yMT ≈ ∆ymt ≈ 0

∆yMt ≈ ∆ymT ≈ 1
2 φD (πmT − πmt)− 1

2 φD (πMT − πMt) < 0

The next result derives implications in terms of the steady-state rate of incremental and
radical innovation.

Proposition 2. There exists δ such that, if δ < δ, then allowing for technology transfer
implies an increase in the steady-state incremental innovation rate, X, and a decrease in
the steady-state drastic innovation rate, Y .

In a related paper, Rasmusen (1988) shows that the possibility of buyout can make entry
profitable which otherwise would not be. In other words, the possibility of firm acquisition
increases entry incentives. Similarly, Proposition 2 implies that the possibility of firm
acquisition increases incremental innovation incentives.

I now turn to the issue of market dominance and innovation incentives. Intuitively,
there are two effects at play: on the one hand, an increase in market dominance increases
the relative bargaining power of firm a with respect to the innovator; on the other hand, an
increase in market dominance increases firm a’s valuation for the innovation. Which effect
dominantes?

11



Figure 4
Firm dominance and innovation
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Proposition 3. Suppose technology transfer is possible. There exists δ such that, if δ < δ
then

• The steady-state incremental innovation rate, X, increases as the degree of firm dom-
inance α increases.

• There exists φ
D

(δ) such that, if φD > φ
D

, then the steady-state drastic innovation
rate, Y , increases as the degree of firm dominance α increases.

Figure 4 illustrates both Propositions 2 and 3. The lighter lines correspond to the equi-
librium without technology transfer, whereas the darker lines correspond to the case with
technology transfer. Although Proposition 2 is limited to the case when δ lies in the neigh-
borhood of 0, we see that the qualitative nature of the results — that technology transfer
increases incremental innovation but decreases radical innovation — also holds for higher
values of δ. The idea is that, upon innovation, a fringe firm that is a technology laggard
captures a higher value than it would absent technology transfer. This leads to an increased
incentive for incremental innovation. But technology transfer has an additional effect: it
increases the relative payoff of a fringe firm vis-a-vis a dominant firm. By doing so, it
decreases the former’s incentive for radical innovation. I call this the “complacency” effect:
technology transfer makes the current state of industry dominance too attractive for the
fringe firm.

Proposition 3 states that, with technology transfer (darker lines in Figure 4) and when
δ ≈ 0, both incremental as drastic innovation increase as the degree of industry dominance
(α) increases. The two panels in Figure 4 confirm this prediction when δ = .1. For higher
values of δ, the relation between α and Y holds. However, for higher values of δ, X turns
from increasing to decreasing in α. The intuition is that there are two conflicting effects.
First, with technology transfer firms partially internalize the joint payoff from innovation;
and an increase in α increases joint payoff. But second, as we saw before an increase in
α implies that, along the steady-state, it’s more common for the fringe firm to be the
technology laggard; and for such firm an increase in α dampens incentives for incremental
innovation.

Leadership persistence. One of the central issues in the innovation literature is the de-
gree to which leaders tend to remain as leaders, as opposed to being replaced by catching-up
or leap-frogging laggards. Arrow (1962) and Reinganum (1983) emphasize the importance
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of the replacement effect: to the extent that technology leaders would be cannibalizing their
own product by producing a new one, laggards are more likely to innovate than leaders.
Lemma 1 is consistent with this view: it shows that, in the neighborhood of δ = 0, the
technology leader’s innovation effort is close to zero, whereas the technology laggard’s is of
positive order. As a result, conditional on innovation taking place, the expected motion of
the system is for the technology laggard to leapfrog the technology leader.

Gilbert and Newbery (1982) point to a different effect (sometimes referred to as the
efficiency effect or the joint-profit effect). If a given innovation were to be appropriated
by the technology leader or by the technology laggard (e.g., sold in an auction), then the
technology leader would have more to lose from not appropriating that innovation than the
technology laggard. As such, we would expect that the technology leader would end up
owning the innovation. The analysis in Section 4 is consistent with this view: if the fringe
firm produces an incremental innovation while technology laggard, then efficient bargaining
implies that the innovation is transferred to the dominant firm, thus implying persistence
of technology leadership (conditional on no radical innovation taking place).

To put it differently, the possibility of technology transfer separates the question of “who
innovates” from the question of “who is the technology leader” (in the sense of owning the
leading technology). The replacement effect implies that technology laggards are more likely
to innovate; but the efficiency effect implies that market leaders are more likely to persist
as technology leaders.

5. Concluding remarks

Sir Isaac Newton famously stated that, “if I have seen far, it is by standing on the shoulders
of giants.” Many recent examples from high-tech industries suggest that the opposite may
be true, that it’s a case of “giants standing on the shoulders of midgets.” In this paper, I
considered two versions of this phenomenon: imitation and acquisition. The first version is
the phenomenon whereby small firms invent only to see their ideas copied by “giants” who
leverage their market power to effectively appropriate the value generated by “midgets.”
The second version is the phenomenon whereby small inventors (“midgets”) are gobbled up
by dominant firms (“giants”).8

If there is no technology transfer, then an increase in industry dominance leads to a
decrease in incremental innovation and an increase in drastic innovation. The increase in
drastic innovation follows from a simple argument: the bigger a giant is, the bigger the
incentive to become a giant (which in my model happens by means of drastic innovation).

Regarding incremental innovation, there are two effects of opposite sign: an increase in
industry dominance increases the dominant firm’s innovation incentives (a sort of “Arrow
effect”) but decreases the fringe firm’s incentives (a sort of negative “Arrow effect”). I
show that, in absolute value, the encouragement effect is greater than the discouragement
effect; but along the steady-state, the discouragement effect is more often relevant than the
encouragement effect, so that, all in all, firm dominance has a negative effect on incremental
innovation.

The possibility of technology transfer changes the comparative statics considerably.
First, technology transfer leads firms to internalize innovation externalities (an effect similar

8. A third possible version of “standing on the shoulders of” is the phenomenon of follow-up
innovation. See Scotchmer (1991), Green and Scotchmer (1995), and Scotchmer (1996).
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to the “Grossman-Hart effect” of investment externalities). This in turn has a positive effect
on incremental innovation. Second, and precisely as a result of the “internalization” effect,
the rate of drastic innovation decreases when technology transfer is possible. Intuitively, to
the extent that the fringe firm’s payoffs increase, its incentives to become a dominant firm
decrease (a sort of negative “Arrow replacement effect”).

Finally, given technology transfer, an increase in firm dominance leads to an increase in
incremental and drastic innovation. The positive effect on drastic innovation has the same
explanation as before (bigger prize, bigger incentive). The positive effect on incremental
innovation results from the internalization by the fringe firm of the added benefits by the
dominant firm.

My results have potentially important antitrust implications, namely policy with respect
to dominant firms. Is market dominance good for innovation? Frequently, the analysis of
market dominance and abuse of market dominance is framed in a static context, or at least
in the context of a given set of products. In highly innovative industries, however, the effect
of antitrust on innovation becomes of primary importance. It has been remarked that

In some niches of the software business, Google is casting the same sort of shadow
over Silicon Valley that Microsoft once did. “You’ve got people who don’t even
feel they can launch a product for fear that Google will get in.”9

I showed that this view has merit (see the first part of Proposition 1) but is incomplete. First,
Google’s innovation incentives are greater the greater Google is.10 Second, if technology
transfer is possible then small innovators benefit from a bigger Google as they are more likely
to be bought by a high price (the “innovation for buyout” effect). Finally, a competition
policy that allows for large “Googles” increases the incentives to become the next Google.
In this sense, a pro-dominant-firm competition policy is a substitute for a pro-innovator IP
policy (e.g., strong patents).

There are a number of possible extensions to my framework, from which I select two.
In this section, I consider a series of possible extensions of my basic framework: number of
firms and bargaining frictions. When we think of a dominant firm, we think of an industry
with a large firm and a large number of small firms. Specifically, an alternative model would
have, in each period, one M firm and N m firms, or one T firm and N t firms. In this
context, an interesting application would be horizontal merger analysis: a (Mt,mt) merger
would correspond as an increase in α; a (mt,mt) merger would correspond to a decrease
in α; and a (Mt,mT ) merger would have implications similar to allowing for technology
transfer.

In my model of technology transfer I assume efficient bargaining. However, Galasso and
Schankerman (2015)’s work on the value of patents suggests that bargaining frictions are
greater when the asymmetry between buyer and seller is greater. Also, anecdotal evidence
suggests that negotiations do not always result in technology transfer. For example, Google
acquired Applied Semantics to get Adsense. Google also attempted to to acquire Idealab,
but the target did not sell. As a result, Google imitated Idealab, the latter sued and the IP
issues were settled in court.

9. “Microsoft And Google Set to Wage Arms Race,” by Steve Lohr and Saul Hansell, The New York
Times, May 2, 2006.

10. Microsoft’s defense in the 1998 DOJ case was partially based on the idea that, precisely because
Microsoft was dominant, it was “paranoid” about the possibility of rival innovation (i.e., Microsoft
had a lot to lose), therefore it had to innovate more.
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If there are bargaining frictions and these are greater the greater the asymmetry be-
tween buyer and seller, then an increase in α, in addition to the effects considered in the
previous sections, would also increase bargaining frictions. Specifically, suppose that, with
probability β, negotiations break down and no technology transfer takes place. My results
remain valid (in qualitative terms) so long as the derivative of β with respect to α is not
too high.

I have also assume that buyer and seller split gains 50-50. This is not an important
assumption. The qualitative results hold if the dominant firm gets a share ψ of the pie,
where ψ ∈ (0, 1). As in the case of β, the important assumption is that the derivative of ψ
with respect to α is not very different from zero.
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Appendix

Proof of Lemma 1: The value functions in each possible state are given by

vMT = πMT − C(xMT )−D(yMT ) + δ yMT vMT + δ
(
1− yMT

)
ymt vmt

+ δ
(
1− ymt

)(
1− yMT

) (
xmt

(
1− xMT

)
vMt +

(
1− xmt

(
1− xMT

))
vMT

)
vMt = πMt − C(xMt)−D(yMt) + δ yMt vMT + δ

(
1− yMt

)
ymT vmt

+ δ
(
1− ymT

)(
1− yMt

) (
xMt

(
1− xmT

)
vMT +

(
1− xMt

(
1− xmT

))
vMt

)
vmT = πmT − C(xmT )−D(ymT ) + δ yMt vmt + δ

(
1− yMt

)
ymT vMT

+ δ
(
1− yMt

)(
1− ymT

) (
xMt

(
1− xmT

)
vmt +

(
1− xMt

(
1− xmT

))
vmT

)
vmt = πmt − C(xmt)−D(ymt) + δ yMT vmt + δ

(
1− yMT

)
ymt vMT

+ δ
(
1− yMT

)(
1− ymt

) (
xmt

(
1− xMT

)
vmT +

(
1− xmt

(
1− xMT

))
vmt

)
The first-order conditions for optimal investment in incremental innovation are given by

xMT = C̆
(
δ
(
1− ymt

)(
1− yMT

)
xmt (vMT − vMt)

)
xMt = C̆

(
δ
(
1− ymt

)(
1− yMT

) (
1− xmT

)
(vMT − vMt)

)
xmT = C̆

(
δ
(
1− ymt

)(
1− yMT

)
xMt (vmT − vmt)

)
xmt = C̆

(
δ
(
1− ymt

)(
1− yMT

) (
1− xMT

)
(vmT − vmt)

)
(5)

The first-order conditions for optimal investment in drastic innovation are given by

yMT = D̆
(
δ ymt (vMT − vmt) + δ

(
1− ymt

)
xmt

(
1− xMT

)
(vMT − vMt)

)
yMt = D̆

(
δ ymT (vMT − vmt) + δ

(
1− ymT

) (
1− xMt

(
1− xmT

))
(vMT − vMt)

)
ymT = D̆

(
δ
(
1− yMt

) (
vMT − xMt

(
1− xmT

)
vmt −

(
1− xMt

(
1− xmT

))
vmT

))
ymt = D̆

(
δ
(
1− yMt

) (
vMT − xmt

(
1− xMT

)
vmT −

(
1− xmt

(
1− xMT

))
vmt

))
(6)

Define, for a generic variable z,

ẑ ≡ z |
δ = 0

ż ≡ ∂z

∂ δ

∣∣∣
δ = 0

Taking derivatives of the value functions and first-order conditions with respect to δ and
substituting δ = 0, we get

x̂ik = 0,

ŷik = 0

v̂ik = πik
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v̇ik = πik

ẋik = C̆ ′(0)
(
v̂Ti − v̂ik

)
= φC

(
πTi − πik

)
ẏik = D̆′(0)

(
v̂MT − v̂ik

)
= φD (πMT − πik)

where i ∈ {M,m} and k ∈ {T, t}. Recall that C̆ is the inverse of the marginal cost function.
Therefore, the derivative of C̆ at zero is equal to the inverse of the derivative of C at zero;
and the latter is given by C ′′(0). It follows that C̆ ′(0) = φC . The same argument implies
that D̆′(0) = φD .

Finally, the result follows by application of Taylor’s theorem.

Proof of Lemma 2: The dynamic model induces a Markov process with two states:
in state 1 the market leader is also the technology leader; in state Mt different firms take
market and technology leadership. Let µ be the steady-state probability of being in state
1. Let ms be the probability of transition to state s, s ∈ {1,Mt}. We then have

m1 = ymT
(
1− yMt

) (
1− xMt

(
1− xmT

))
+ xMt

(
1− xmT

) (
1− ymT

(
1− yMt

))
m0 = ymt

(
1− yMT

) (
1− xmt

(
1− xMT

))
+ xmt

(
1− xMT

) (
1− ymt

(
1− yMT

))
The steady state probability of being in state 1 is then given by

µ =
m1

m0 +m1

Note that m̂i = 0. Therefore, µ̂ results in an indeterminacy. Applying L’Hôpital’s rule, we
have

µ̂ =
ṁ1

ṁ0 + ṁ1

=
ẏmT + ẋMt

ẏmt + ẋmt + ẏmT + ẋMt

(7)

Substituting (1) into (2),

X ≡ µ
(

1−
(
1− xMT

)(
1− xmt

))
+(1− µ)

(
1−
(
1− xMt

)(
1− xmT

))
Y ≡ µ

(
1−
(
1− yMT

)(
1− ymt

))
+(1− µ)

(
1−
(
1− yMt

)(
1− ymT

)) (8)

Differentiating (8) with respect to δ at δ = 0,

Ẋ = µ̂ ẋmt +
(
1− µ̂

)
ẋMt

Ẏ = µ̂ ẏmt +
(
1− µ̂

) (
ẏMt + ẏmT

)
Substituting (7) for µ̂,

Ẋ =

(
ẏmT + ẋMt

)
ẋmt +

(
ẏmt + ẋmt

)
ẋMt

ẏmt + ẋmt + ẏmT + ẋMt

Ẏ =

(
ẏmT + ẋMt

)
ẏmt +

(
ẏmt + ẋmt

) (
ẏMt + ẏmT

)
ẏmt + ẋmt + ẏmT + ẋMt

(9)
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Since X̂ = Ŷ = 0, the result follows.

Proof of Proposition 1: Consider first the case of incremental innovation. From (9),
φD = 0 implies that, in the neighborhood of δ = 0,

Ẋ =
2 ẋMt ẋmt
ẋmt + ẋMt

Since, at δ = 0, xik = X = 0, in the neighborhood of δ = 0

X ≈ 2xMt xmt
xmt + xMt

It follows that dX/dα < 0 if and only if(
dxMt

dα
xmt + xMt

dxmt
dα

)
(xmt + xMt)−

(
dxMt

dα
+
dxmt
dα

)
xMt xmt < 0

or simply

(xmt)
2 dxMt

dα
+(xMt)

2 dxmt
dα

< 0

Substituting the values from Lemma 1 the result’s expression is obtained. Finally, for
φD > 0, the result follows by continuity.

Consider now the case of drastic innovation. From (9), φD →∞ implies that

Ẏ =
ẏmt

(
2 ẏmT + ẏMt

)
ẏmt + ẏmT

Since, at δ = 0, yik = X = 0, in the neighborhood of δ = 0

Y ≈
ymt

(
2 ymT + yMt

)
ymt + ymT

It follows that dY /dα > 0 if and only if(
dymt
dα

(
2 ymT + yMt

)
+ ymt

(
2
dymT
dα

+
dyMt

dα

))
(ymt + ymT )−

(
dymt
dα

+
dymT
dα

)
ymt

(
2 ymT + yMt

)
< 0

or simply

dymt
dα

(
2 ymt + yMt

)
+
dymT
dα

(
2 ymt − yMt

)
+
dyMt

dα
(ymt + ymT ) > 0

which in turn follows from Lemma 1 and Part (b) of Assumption 3.

Proof of Lemma 3: Technology transfer takes place at state Mt and only at that state.
Specifically, if firms find themselves in state Mt then upon successful negotiations they
move to state 1, where continuation values are given by (vMT , vmt). Let p be the price paid
by the market-dominant firm for the superior technology. The dominant firm’s gain from
technology transfer is then given by (vMT − p) − vMt , whereas the rival firm’s gain from
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technology transfer is given by (vmt +p)−vmT . It follows that the Nash bargaining transfer
price solves

max
p

(vMT − p− vMt) (vmt + p− vmT )

which implies
p̂ = 1

2(vMT − vMt + vmT − vmt)
In equilibrium, firm mT sells the technology for p̂ and becomes a technology laggard.

Let uik denote the interim value before negotiations take place. Then we have

umT = vmt + p̂ = 1
2 (vMT − vMt + vmT + vmt)

uMt = vMT − p̂ = 1
2 (vMT + vMt − vmT + vmt)

(10)

whereas uik = vik for all other cases. Value functions are now given by

vMT = πMT − C(xMT )−D(yMT ) + δ yMT vMT + δ
(
1− yMT

)
ymt vmt

+ δ
(
1− ymt

)(
1− yMT

)(
xmt

(
1− xMT

)
uMt +

(
1− xmt

(
1− xMT

))
vMT

)
vMt = πMt − C(xMt)−D(yMt) + δ yMt vMT + δ

(
1− yMt

)
ymT vmt

+ δ
(
1− ymT

)(
1− yMt

)(
xMt

(
1− xmT

)
vMT +

(
1− xMt

(
1− xmT

))
uMt

)
vmT = πmT − C(xmT )−D(ymT ) + δ yMt vmt + δ

(
1− yMt

)
ymT vMT

+ δ
(
1− yMt

)(
1− ymT

)(
xMt

(
1− xmT

)
vmt +

(
1− xMt

(
1− xmT

))
umT

)
vmt = πmt − C(xmt)−D(ymt) + δ yMT vmt + δ

(
1− yMT

)
ymt vMT

+ δ
(
1− yMT

)(
1− ymt

)(
xmt

(
1− xMT

)
umT +

(
1− xmt

(
1− xMT

))
vmt

)
(11)

The first-order conditions for optimal xik and yik are isomorphic to (5) and (6), with the
difference that we have uik on the right-hand side instead of vik.

xMT = C̆
(
δ
(
1− ymt

)(
1− yMT

)
xmt (vMT − uMt)

)
xMt = C̆

(
δ
(
1− ymt

)(
1− yMT

) (
1− xmT

)
(vMT − uMt)

)
xmT = C̆

(
δ
(
1− ymt

)(
1− yMT

)
xMt (umT − vmt)

)
xmt = C̆

(
δ
(
1− ymt

)(
1− yMT

) (
1− xMT

)
(umT − vmt)

)
(12)

yMT = D̆
(
δ ymt (vMT − vmt) + δ

(
1− ymt

)
xmt

(
1− xMT

)
(vMT − uMt)

)
yMt = D̆

(
δ ymT (vMT − vmt) + δ

(
1− ymT

) (
1− xMt

(
1− xmT

))
(vMT − uMt)

)
ymT = D̆

(
δ
(
1− yMt

) (
vMT − xMt

(
1− xmT

)
vmt −

(
1− xMt

(
1− xmT

))
umT

))
ymt = D̆

(
δ
(
1− yMt

) (
vMT − xmt

(
1− xMT

)
umT −

(
1− xmt

(
1− xMT

))
vmt

))
(13)
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Substituting 0 for δ in (11), we get

v̂ik = πik

Substituting 0 for δ in (10), we get

ûmT = 1
2 (πMT − πMt + πmT + πmt)

ûMt = 1
2 (πMT + πMt − πmT + πmt)

whereas ûik = v̂ik = πik for all other cases. Regarding the values of xik, yik, we have

x̂ik = 0,

ŷik = 0

ẋti = C̆ ′(0)
(
ûTi − ûti

)
ẏti = D̆′(0)

(
ûMT − û

t
i

)
or simply

ẋik = 1
2 φC

(
πMT + πmT − π

k
M − πkm

)
ẏik = 1

2 φD

(
πMT − πmt − πik + π`j

)
where i, j ∈ {M,m}, k, ` ∈ {T, t}, j 6= i and ` 6= k. The result follows.

Proof of Proposition 2: In equilibrium, whenever the dominant firm is the technology
laggard it acquires the rival’s technology. As a result, at the beginning of each period the
dominant firm is the technology leader, either as a result of its innovation effort or as a
result of technology acquisition. It follows that µ = 1.

Consider first the implications for incremental innovation. Since µ = 1 under technology
transfer, (1) and (2)

Ẋ = Ẋ1 = ẋmt + ẋMT

Lemma 3 implies
Ẋ = ẋit = 1

2 φC (πMT + πmT − πMt − πmt) (14)

By contrast, absent technology tranfer,

Ẋ = µφC (πmT − πmt) + (1− µ)φC (πMT − πMt) (15)

From (7)

µ̂ =
ẋMt

ẋmt + ẋMt

≈ πMT − πMt

πMT − πMt + πmT − πmt
(16)

Part (c) of Assumption 3 implies that πMT − πMt > πmT − πmt . From (16), it follows that
µ̂ > 1

2 . Note that the right-hand sides of (14) and (15) are convex combinations of πMT −πMt

and πmT − πmt ; but the latter places a greater weight on the lower term. Finally, given we
have strict inequalities, the result follows by continuity.
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Consider now the case of drastic innovation. Since µ = 1 under technology transfer, (1)
and (2) imply

Ẏ = Ẏ1 = ẏmt + ẏMT

Lemma 3 then implies that
Ẏ = φD(πMT − πmt)

Lemma 1 implies that, under no technology transfer,

Ẏ1 = ẏmt + ẏMT = φD(πMT − πmt)
ẎMt = ẏmT + ẏMt = φD(πMT − πmT ) + φD(πMT − πMt)

It follows that the value of Y under technology transfer is lower than under no technology
transfer if and only if

(πMT − πmT ) +(πMT − πMt) >(πMT − πmt)

which is equivalent to
πMT − πMt > πmT − πmt

which follows from Assumption 3 (c). Finally, the result follows by continuity.

Proof of Proposition 3: Consider first the case of incremental innovation. From Lemma
3,

X ≈ 1
2 φC (πMT − πMt + πmT − πmt)

The result then follows from parts (c) and (d) of Assumption 3.
Consider now the case of drastic innovation. From the proof of Proposition 2, if the

limit as φD →∞,

Ẏ =
ẏmt

(
2 ẏmT + ẏMt

)
ẏmt + ẏmT

Since, at δ = 0, yik = Y = 0, in the neighborhood of δ = 0

Y ≈
ymt

(
2 ymT + yMt

)
ymt + ymT

It follows that, if φD is sufficiently high and δ is sufficiently low, then dY /dα > 0 if and
only if(
dymt
dα

(
2 ymT + yMt

)
+ ymt

(
2
dymT
dα

+
dyMt

dα

))
(ymt + ymT )−

(
dymt
dα

+
dymT
dα

)
ymt

(
2 ymT + yMt

)
< 0

or simply

dymt
dα

(
2 ymt + yMt

)
+
dymT
dα

(
2 ymt − yMt

)
+
dyMt

dα
(ymt + ymT ) > 0

From Lemma 2 and Assumption 3, the terms in brackets, as well as the partial derivatives,
are all positive. Finally, the result follows by continuity.
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