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Abstract 
 

Previous literature shows that contracting frictions may preclude valuable cooperation 
between innovators and commercializers in Markets for Technology. This literature, 
however, does not address the question of how large the implied inefficiency is. Focusing 
on licensing-based cooperation in the pharmaceutical industry and the enactment of the 
Medicare Part D program (which implied a large downstream demand shock for selected 
technologies), we provide evidence suggesting that efficiency is not severely undermined 
in this market. Our results suggest that while contracting frictions preclude some 
cooperation; they do not do so for the 75% of technologies for which potential gains of 
cooperation are the largest. The implied efficiency burden is therefore much lower than 
what could be estimated based on the number of “failed cooperation deals” alone. Our 
results further document a vigorous, short-termed cooperation response to the program’s 
enactment, suggesting that commercializers may effectively perform the intermediary 
role of sourcing from the Market for Technology to satisfy consumer demand. 
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1. Introduction 

The trade of knowledge-based intermediate inputs in Markets for Technology (MFT) 

has become an important pillar for inter-firm cooperation aimed for the innovation of 

new products. Fueled by deepening technological and marketing complexity, these 

markets create gains by promoting specialization (Arora et al., 2001), avoiding replicative 

investments in the so-called “complementary assets” (Teece, 1986; Gans et al., 2002; 

Gans and Stern, 2003; Galasso et al., 2010), and preserving market power (Gans et al., 

2002; Gans and Stern, 2003). Vibrant MFTs can be traced back to the late nineteenth 

century in select industries (Lamoreaux and Sokoloff, 1999) but since then new arenas of 

trade have emerged and aggregately grown (outpacing GDP) to a total of over $100 

billion in annual transactions (Arora and Gambardella, 2010).   

Exchange in these markets faces challenges grounded on the very nature of the traded 

assets. The imperfect appropriability of knowledge may dissuade agents from engaging in 

trade for the fear of having their ideas expropriated (Arrow, 1962; Anton and Yao, 1994). 

Even when intellectual property protection is possible, uncertainty regarding its extent 

and scope may preclude or delay cooperation (Gans et al., 2002; Gans et al., 2008). 

Costly and lengthy processes of search for partners (Hellman, 2007; Agrawal et al., 2014) 

and arduous contract negotiations imply monetary and alternative costs (Lerner and 

Merges, 1998; Agrawal et al., 2014). These are further compounded by the significant 

uncertainty and informational asymmetries stemming from the novelty and complexity of 

new technologies, which make it hard to evaluate their technical and commercial merits, 

and ultimately agree to “fair” terms of cooperation (Agrawal et al., 2014). These frictions 

are commonly referred to as transaction costs as they may impede the materialization of 

valuable cooperation agreements. 

Owing to these considerations, a presumption of ineffiency looms over MFT. In an 

efficient market, cooperation would pair innovators with commercializers to maximize 

benefits of complementary expertise and avoid replicative investment. Furthermore, to 

the extent that the benefits of complementary expertise can be exploited during a 

product’s development, cooperation would be initiated early on in the process. Previous 

research has produced evidence that characterizes the impacts of the individual types of 



! 2!

transaction costs, convincingly arguing that these operate in the market and preclude 

some cooperation. Yet, to the best of our knowledge, there has been no deliberate attempt 

to provide context by sizing their aggregate efficiency burden. We see this as an 

important gap, as the nature of policy implications and emphasis of future research ought 

to depend on whether we find ourselves in a situation in which little or great value is lost 

to cooperation that fails to materialize. Focusing on licensing-based cooperation on the 

drug development industry (where biotech firms play the role of upstream innovators and 

large “Big Pharma” corporations that of downstream commercializers), this paper 

constitutes a first step to elucidate this.  

An assessment of the efficiency burden imposed by transaction costs on MFTs that 

solely relies on the number of cooperation agreements would be correct if the value of 

cooperation was homogeneous across technologies. However, even within an industry, 

technologies may vary widely in this respect. Variation can stem from the characteristics 

of the downstream (narrowly defined) market (Gans et al., 2002; Gans and Stern, 2003) 

or from the degree of dependence on complementary assets created by the technology’s 

design (Teece, 1986).  

The latter effect is notoriously heterogeneous across technologies in the industry 

under study. The dissemination of information required to generate adoption of new drug 

therapies heavily relies on promotional visits by pharmaceutical representatives to 

prescribing physicians. Failure to strike a cooperation agreement forces an innovator 

without market presence to assemble, train and maintain its own contingent of 

representatives. When cooperation is in place, however, these costs are spread out over 

the many drugs in the downstream commercializers’ wide portfolios. This means that 

cooperation leads to higher average profit margins through the exploitation of scope 

economies in distribution. In this context, therapies prescribed by large populations of 

physicians benefit from cooperation more than those with smaller populations. To 

illustrate the heterogeneity stemming from the dependence on this type of complementary 

asset figure 1 shows the distribution of the number of prescribing physicians (NPP) 

among compounds in our main data set.1  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!We explain the construction of this variable in section 4.!
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We provide two sets of results suggesting that the majority of high-value cooperation 

is not precluded by transaction costs. First we examine the patterns of licensing-based 

cooperation within a large sample of developing compounds. We find that rates of 

cooperation are overall high, and strongly increasing in the NPP measure. This last result 

serves a validation for NPP as a leading determinant of the technology-specific value of 

cooperation and supports the notion that transaction costs do not severely undermine the 

realization of gains from cooperation when it matters the most. Nevertheless, it is still 

vulnerable to the possibility that other sources of value may remain vastly unexploited, 

for example, because deals are struck in untimely fashion or because inefficient matching 

destroys market power.  

Our second set of analysis attempts to moderate this problem by studying the 

anatomy of the cooperation response to the downstream demand shock implied by the 

2003 enactment of Medicare Part D (“Part D”). This program constituted a large 

expansion of the reimbursement coverage for prescription drug expenditures of Medicare 

enrollees (65yo+), effectively expanding downstream demand for selected therapies 

(those that are more prevalent among Medicare enrollees.) Focusing on the number of 

licensing deals aimed for the commercialization of compounds in territories that include 

the U.S., figure 2 evidences a strong increase in the extent of cooperation among 

compounds with high exposure to the shock (solid line) relative to that among 

compounds with low exposure (dashed line).2 Figure 3 replicates these trends among 

licensing deals that did not include U.S. commercialization. In this case, there is no 

exposure-mediated difference, reassuring us of the effect’s exogeneity.  

As we show with a simple model, transaction costs of different magnitudes imply 

markedly different patterns of the cooperation response along the distribution of 

cooperation values. If transaction costs are relatively high, the cooperation response will 

mostly draw from technologies in upper ranges of the distribution. In contrast, if 

transaction costs are relatively low, the cooperation response will mostly draw from the 

bottom of this distribution. The intuition is simple: the higher transaction costs are, the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 To determine a compound’s degree of exposure to the demand shock we follow the approach of Duggan 
and Scott-Morton (2011), Blume-Kohout and Sood (2013) and Dranove et al. (2014) by computing the 
“Medicare Market Share” variable. In section 5 we explain the details of the procedure.  
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higher the cooperation value associated to the inframarginal technology is. Our results 

support the brighter scenario in which transaction costs are moderate, suggesting that 

they effectively preclude cooperation only for those technologies at the bottom quartile of 

the distribution of cooperation.  

Further analysis suggests that the cooperation response was instantaneous and 

focused on the licensing of compounds that were undergoing clinical trials. Given the 

long drug development cycles, this suggests that the increased volume of licensing-based 

cooperation was not an artifact of an “endogenous supply” effect. It also suggests that the 

effect may have operated in the form of facilitating negotiations that were ongoing at the 

time the program was enacted, as a higher downstream demand increases the size of the 

bargaining core and makes it easier for firms to agree to “fair” terms (Lerner et al., 2002).  

The current MFT literature displays a marked focus on the supply side or, as 

Arora and Gambardella (2010) put it, “the factors that lead companies to license or sell 

technology, the implications thereof […] and the conditions that facilitate the rise of 

technology specialists.”3 Our research contributes to this literature by offering a more 

panoramic view, one in which firms on the demand side of MFT act as agents for 

commercialization whose main role is to source embryonic technologies from the MFT, 

employ their capabilities to develop them into final products and allocate them to 

consumer demand. While we do not directly analyze these firms’ behavior, we interpret 

the vigorous cooperation response to Part D as an auspicious sign, as it suggests that 

these “technology demandants” effectively perform this role by agilely reacting to satisfy 

market opportunities.4 Carefully interpreted, the strong cooperation response is also a 

good sign in that it suggests that MFT could be effectively performing a screening role: 

failed cooperation could in part signal the “weeding out” of technologies “pushed” by 

innovators for which market potential is not large enough to justify the commercialization 

effort. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3!Two!exceptions!are!Cassiman and Veugelers (2006) and Forman et al. (2008), who focus on the question 
of how firms’ characteristics (or the environment they operate on) affect their demand for external 
technology!
4!Furthermore, because we only focus on cooperation in the form of commercialization licensing deals, 
these estimates may underestimate the true extent of cooperation in the market place, as share of it takes 
place in the form of Mergers and Acquisitions (Gans et al., 2002; Higgins and Rodriguez, 2006).  
!
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In the remainder of the paper we present a theoretical framework and empirical 

strategy (section 2) and describe the licensing data (section 3). We then describe the 

construction and validation of our proxy for the value of cooperation (section 4). We 

continue by providing an overview of Part D and the measurement of the implied demand 

shock across therapeutic categories (section 5) and documenting the cooperation response 

(Section 6). In section 7 we delve into the possibility of potentially confounding 

endogenous supply effects and conclude in section 8 discussing and summarizing our 

main results. 

 

2. Analytical Framework 

The purpose of the framework developed here is not to provide an accurate 

description of the types of interactions or behavior (e.g., search, matching) that may be 

conducive to cooperation agreements in MFT, but to lay out a model to guide the 

interpretation of the empirical results and set up the identification strategy. The model is 

therefore silent about the way rents accrued from cooperation are divided between 

contracting parties, or how private benefits may prompt agents’ collaboration, or what the 

specifics of the matching process are. Instead it provides a simple characterization of the 

economic fundamentals that can support cooperation because they generate a higher total 

profit than its alternative (i.e., no cooperation or “self-commercialization”), assuming 

agents will find a way to divide profits (possibly at a cost). The section is divided in two 

parts, a first in which we present the basic analytic framework, and a second in which we 

describe the empirical strategy.  

 

2.1 Theory 

We consider a static setting in which each upstream innovator (! = 1,… , !) has a 

new technology. Each innovator has a single technology, so both technologies and 

innovators are indexed by !. The new technology could either be seen as a product that is 

ready to be commercialized or the core technological component over which a new 
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technology product can be developed.5 Its potential for use is narrow in scope, that is, it is 

not a general-purpose technology and targets a well-defined market. The technology 

could reach the market either through cooperation with a downstream commercializer 

! = 1,… , !  or self-commercialization by the innovator (i.e., no cooperation).  

Downstream commercializers are endowed with a commercialization advantage. 

This occurs because they are able to deliver higher average profit margins, either because 

they possess complementary assets 6  or because they have market power in the 

downstream market. Below we describe how these can be justified in the context of the 

pharmaceutical industry. 

A technology’s total expected profits (or consumer demand, or market potential) 

under self-commercialization is denoted by !! . 7  One can think of !!  as the total 

willingness to pay that the innovator will be able to capture on its own, net of any 

investments done for that purpose.  

Under cooperation, a technology’s total expected profits are larger as the 

capabilities of a downstream commercializer are employed. We denote total expected 

profits in this case as !!!!" , where !!" ≥ 1 is the cooperation multiplier, which reflects 

the additional value stemming from the synergies of cooperative commercialization when 

a match with a commercializer ! is in place.  

In the pharmaceutical industry, the cooperation multiplier can be justified by the 

extensive market knowledge, brand recognition and downstream market power of 

established Big Pharma commercializers.8 Another important determinant stems from 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5!In!this!case!we!assume!that!development is immediate and riskless, and associated costs are zero.!
6!For example, commercializers with brand recognition may be able to charge a higher price to consumers. 
Alternatively, commercializers with established distribution channels can spread associated fixed costs 
among all commercialized technologies in their portfolios, leading to lower average distribution costs.!
7 Aside from behind-the-scenes and cross-industry variation, the role of downstream consumer demand 
remains unexplored in the related empirical literature. An exception arises in the literature examining the 
impact of intellectual property protection on international technology transfer (e.g., Branstetter et al., 2006; 
Delgado et al., 2013), where increases in market potential are identified after countries boost enforcement 
of intellectual property rights laws.  
8 High concentration within therapeutic areas (Malerba and Orsenigo, 2002) warrants the existence of loses 
due to enhanced competition. Another source of cooperation value lies on downstream commercializers’ 
potential regulatory advantage, acquired throughout their long histories of interactions with the FDA. This 
advantage can translate in a higher probability of obtaining regulatory approval, but also in faster time-to-
market (Dranove and Meltzer, 1994).  
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their established distribution channels. Promotional activities heavily rely on visits to 

physicians by sales representatives (Silverman, 2014) and have traditionally claimed a 

significant share of industry revenues (Donohue et al., 2007).9 For a biotech innovator 

without presence in the downstream market, self-commercialization therefore implies 

investing in assembling and training a sales force, a fixed cost that translates into lower 

average margins. This means that cooperation can be valuable if replicative investment is 

avoided.  

Based on the idea that some technologies can benefit from cooperation more than 

others, we define the cooperation multiplier as being driven by a main technology-

specific effect (!!) and a match-specific deviation (!!"). We specify it as 

!!" = 1+ !!!!" 

with !! ,!!" ∈ 0,1 , and independently distributed according to !! and !!, respectively. 

Thus, !! reflects the average the extent of cooperation gains when the best possible match 

is materialized (!!" = 1). Poorer matches (!!" < 1) erode these gains and, in the 

extreme, can completely eliminate them (!!" = 0). 

The final component of the model is a transaction cost, which we denote by ! and 

assume is paid every time cooperation happens. Given the nature of our empirical 

exercise, we define it broadly, including the alternative cost of time and the monetary 

costs implied by the search of partners and negotiation of a cooperation agreement (i.e., 

the allocation of control rights and division of profits),10 which entails comprehensive 

due diligence and bargaining to reach agreement over a wide range of control and 

residual rights (Lerner and Merges, 1998; Lerner et al., 2004; Lerner and Malmendier, 

2006). Crucially, the success of negotiations is contingent on firms agreeing to “fair” 

terms, an elusive requirement given the novelty and complexity of implied technologies 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9!In 2005, for example, industry-wide expenditures in promotional activities amounted to $18 billion (about 
6% of revenues). The bulk of this came from detailing and drugs samples (Donohue et al., 2007). 
10!Finding a potential cooperating firm may require companies to exert effort, in the form of attending 
industry conferences, prepare briefings and/or hire intermediaries. This process may take up to 18 months 
(Agrawal et al., 2014). When a potential partner has been found, a lengthy negotiation ensues. (From our 
interviews with technology transfer experts, we have found out that these negotiations typically take at least 
6 months can often exceed one year.)!
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and the associated difficulties in evaluating their technical and commercial merits (von 

Hippel, 1994; Pisano, 1997; Pisano, 2006; Hermosilla, 2015).  

Transaction costs can be further compounded by the bargaining power asymmetry 

between biotech innovators and “Big Pharma” commercializers. Largely stemming from 

the large number of upstream innovators but small number of commercializers (Lerner 

and Merges, 1998; Malerba and Orsenigo, 2002; Hellman, 2007; Levine, 2009; Bosse 

and Alvarez, 2010), “Big Pharma” firms are usually seen as having a much stronger 

bargaining position than biotech firms. This prompts biotech firms to intensify their 

search and simultaneously negotiate with multiple firms in order to improve their 

bargaining position.11   

In this context, the MFT will support cooperation if the total profits of doing so 

(net of the transaction cost) are larger than under self-commercialization. That is, if 

!! 1+ !!!!" − ! > !! ! 
Or equivalently, if 

!! >
!

!!!!"
 

This expression illustrates that in this context, a higher demand shock always 

favors cooperation over self-commercialization, except for the cases in which all 

cooperation value is destroyed by !! = 0 or !!" = 0.  The expression also shows that 

cooperation is only viable if transaction costs are relatively low with respect to the value 

of cooperation, !!!!" . Heterogeneity in !!"  warrants that at any non-zeros !! ,!some 

cooperation will fail due to poor matches.  

 Assuming a mass of technologies equal to 1 and conditional on the value of 

transaction costs, the total number of cooperation agreements in the (!! ,!!) is given by  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 As in Gans et al. (2002,2008), we envision the transaction cost as an independent friction to that caused 
by imperfect intellectual property rights. One reason for this is that, as opposed to search and negotiation, 
there is not much scope for firms’ effort in accelerating the grant of patents or broadening the extent and 
scope their IPR protection. Both upstream and downstream firms may be reluctant to engage in 
negotiations before patent rights have been granted, the former fearing the risk of expropriation, the latter 
facing massive uncertainty about the compound’s commercial value. A second reason is that over 60% of 
the licensing deals observed in our sample occur after compounds have been entered to clinical trials, a 
stage at which compounds’ patent portfolios have usually been consolidated (Mossinghoff, 1999; Thomas, 
2004; Patrick, 2013). Thus, whatever effects on licensing activity we identify are likely to stem from 
frictions other than the imperfections of IP protection.       
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! !! ,!!|! =
!!(!!) !! ! !"!!!!!!!if! !!!

≤ !! !
!

!
!!!!

!0!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!if! !!!
> !!

 

 

This expression illustrates the notion that transaction costs completely preclude 

cooperation for the set of technologies in the set {!:!!!! < !}. For these, even under a 

perfect match, transaction costs outweigh the potential gains of collaborative 

commercialization. For the rest, the extent of cooperation depends on both the frequency 

of !! and the extent to which lower matching values will erode the gains of cooperation.  

 A downstream demand shock ! > 0  increases the extent of cooperation –it 

generates a cooperation response– with two mechanisms. An intensity effect arises 

among the technologies in the set {!:!!!! ≥ !} (i.e., those for which cooperation was not 

completely precluded at the baseline demand level), as the higher demand level lowers 

the threshold at which an imperfect match is able to articulate cooperation. A coverage 

effect arises among technologies in the set {!:!!!! < !} as the demand shock makes 

cooperation viable for technologies lower in the domain of !. 

These effects are illustrated by figure 3. The area below the solid curve reflects 

the extent of cooperation (i.e., number of cooperation agreements) at the baseline demand 

level. A demand shock shifts this curve outwards, increasing the extent of cooperation. 

The higher number of deals for technologies in the set {!:!!!! ≥ !} reflected by the area 

between the curves entails the intensity effect. The higher number of deals associated 

technologies in the set {!:! ≥ !! 1+ !! !! ,! < !!!!} reflected by the area below the 

dashed curve reflects the coverage effect.  

The intensity and coverage effect add up to determine the cooperation response 

for type V technologies. We formally define the cooperation response (CR) as the 

incremental number of cooperation agreements induced by the demand shock, that is, 

!" !! ,!! ,!,! = ! !! ,!! + !,! − ! !! ,!! ,! , or 
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!" !! ,!! ,!,! =

!!(!!) !! ! !"!!!!!!!!
!

!!!!
!

!!(!!!!)
if! !!!

≤ !!

!!(!!) !! ! !"!!!!!!!!!!!!!
!

!
!!(!!!!)

if! !
!! + !

≤ !! <
!
!!

0 !if! !
!! + !

> !!

 

 

The first case reflects the intensity effect; the second, the coverage effect. The 

third case points to those technologies that are excluded from cooperation even after the 

demand shock arrives (as its magnitude is not enough to offset C even under the perfect 

match) and therefore do not produce a cooperation response. It is straightforward to note 

that the coverage effect can only arise if if C>0, as otherwise cooperation would occur at 

all levels of V at the baseline demand level.  

The essence of our empirical analysis is to contrast this formulation against its 

empirical counterpart to make an inference over the magnitude of transaction costs. If 

these are relatively high, the kink introduced by the coverage effect will arise towards the 

upper end of the distribution of V. To the left of it, the cooperation response will be null. 

In contrast, if transaction costs were relatively low, the kink will appear at lower ranges 

of V.  

These patterns are crystalized by figure 4. It shows that the shape of the 

cooperation response across the domain of V has markedly different patterns depending 

on the magnitude of transaction costs. We generate this graph assuming that V and M are 

uniformly distributed and compare several cases, assuming different values of C (as a 

share of baseline demand). Consistent with our analysis, when transaction costs are null, 

there is no cooperation response. When these are positive but small (10% of D), the effect 

is concentrated in lower ranges of V (i.e., the bottom quartile if one were to assume a 

uniform !!), as these are the technologies that were inframarginal at the baseline demand 

level. After this, it exhibits a downward slope. The larger transaction costs are, the larger 

the V value of inframarginal technologies at the baseline demand level is, hence the more 

intensively the cooperation response draws from higher ranges of the V distribution.   



! 11!

2.2 Empirical Strategy 

We denote by !!!  the total number of technologies (i.e., compounds) with 

associated to cooperation value V that are eligible for cooperation on period !, where 

! < !∗ represents the periods before the demand shock arrives and ! ≥ !∗ those in which 

the demand shock in place. There are two types of compounds, ! = 1 (no exposure to the 

demand shock) and ! = 2 (exposed to the demand shock). The number of newly signed 

cooperation agreements is !!!" .! The empirical counterpart of the probability of 

cooperation in the cell (!, !,!) is 

Pr(!""#|!, !,!) = !!!"
!!!"!!!

 

where !!!" represents the share of !!!  that is type ! in period !. In our data we neither 

observe !!!" nor !!! , so we rely on a difference-in-difference strategy and the assumption 

that !!!" is constant in time (i.e., !!!" = !!!).12  

 Based on our proxy for V, we estimate models with the following specification 

!!!" = ! !!! + !!! ∙ ! ! = 2 + !!! ∙ ! ! = 2 ∙ ! ! ≥ !∗ + !!! + !!!" , 

where ! ∙  is an indicator function, !!!  are year fixed effects, !!!" is an idiosyncratic error, 

a !  represents the functional form associated to a Poisson count model. Baseline 

differences in the number of compounds that are eligible for cooperation (i.e., !!!) are 

picked up by !!!.Time fixed effects control for changes in macroeconomic conditions that 

may induce an overall increase (or decline) in licensing (Lerner et al., 2002). The 

estimated coefficient of !!! picks up the differential licensing-based cooperation between 

the compounds that were exposed to the demand shock and those that were not. That is, 

!!! identifies the cooperation response among compounds with cooperation value V. 

Comparing the estimates of !!! across ranges of V, and based on the patterns shown in 

figure 4, we can evaluate whether the anatomy of cooperation response evidenced by 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
12!This assumption is reasonable in the short-term as, given the characteristics of the innovative process in 
this industry, a supply reaction should not be immediate. Indeed, Blume-Kohout and Sood (2013) Dranove 
et al. (2014) have shown that these “endogenous supply” effects kicked with a lag of about 4 years, after 
the identified cooperation response occurred. Later we provide evidence to support this claim.!
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figure 2 resembled that of a market with relatively low or relatively high transaction 

costs.!  

 

3. Licensing data 

Our main source of data is the Thomson Reuters Cortellis Life Sciences data, a 

comprehensive repository of drug licensing data. This data subscription service is widely 

used by industry practitioners to inform strategic development decisions and prepare for 

negotiations. Some subsets of the data have also been used by academics in various 

subfields of economics and management (Lerner and Merges, 1998; Lerner et al., 2003; 

Lerner and Malmendier, 2010; Dranove et al., 2014; Hermosilla, 2015).  

Our main set of results is drawn from the “Recap – DEAL Builder” tool offered 

by the Cortellis subscription,13 which tracks strategic alliance activity in the sector. Recap 

is known as the gold standard for actionable data on biopharmaceutical deal making, as it 

contains information of over 40,000 alliances struck since the early 1970s. The company 

obtains alliance information through Freedom of Information Act requests to the 

Securities and Exchange Commission (SEC). Publicly traded firms are required by law to 

submit this information, while privately held firms also have to in some states if they 

provide employees with stock option plans (Lerner and Merges, 1998). Privately held 

firms will also submit this information voluntarily if they aspire to become publicly 

traded at some point. Thus, the Recap sample presumably accounts for all deals in which 

at least one US-based firm is involved.   

The definition of alliance is wide encompassing in this industry. It includes early-

stage joint ventures, contracted research, the licensing of research tools and other 

auxiliary technologies, as well as collaborative development and commercialization of 

compounds. While all these forms of collaboration usually imply some form of licensing 

of intellectual property, they arise in different environments and are governed by 

different forces. Joint ventures tend to occur before a drug candidate is discovered, when 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13  The Recap service was originally provided by a San Francisco based independent company 
(Recombinant Capital) and later acquired by Deloitte, which later sold it to Thomson Reuters in 2013.  
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two or more firms believe their expertise (or IP portfolios) could be combined to produce 

the defining IP for a new compound. Research tools and contracted research are typically 

traded in the form of services purchased by a focal innovator firm that has already 

defined the basic design of the compound to be developed, but needs help doing so. 

Similarly, auxiliary technologies (e.g., drug delivery) are licensed to enhance the design 

or quality of the developing compound. Thus, these three forms of collaboration tend to 

occur early in the development process (before the compound’s main technological 

characteristics are defined) and are reasonably described as horizontal alliances. Indeed, a 

significant share of this type of alliances is signed between small biotech firms without 

presence in the downstream drug market.   

Collaborative development and commercialization is, on the other hand, better 

described as a vertical alliance. In this case, an innovative firm developing a compound 

with an already well-defined technological core faces the commercialization dilemma, 

choosing between self-commercialization and cooperation with an established 

commercializer. On the side of the market, established commercializers are prompted to 

enter into these alliances in order to maintain or enhance their position in the downstream 

market through these outsourced innovations.  

By virtue of the design of the licensing contract, innovator and commercializing 

firms commit to combine their expertise in order to gain regulatory approval. Control 

rights are shared (Lerner and Merges, 1998; Anand and Khanna, 2000; Lerner et al., 

2003; Lerner and Malmendier, 2010) and profits too, through milestone payments and 

royalties on revenues (Allain et al., 2011; Giovanetti and Jaggi, 2012; Hermosilla, 2015). 

This type of deals is typically referred to as a “strategic alliance” because, by agreeing to 

a licensing contract, firms engage in a medium to long-term collaboration.  

Our main analysis focuses on development and commercialization collaborations, 

as measured by the number of what the data reports as new “development and 

commercialization” and “commercialization” licensing contracts signed each year. There 

are 12,846 of these contracts in the data. As opposed to the other types of collaboration 

agreements, these deals always entail a relatively well-defined compound. That is, these 
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deals trade the commercialization rights for a narrow-focused core technological 

component from which a final product (a pharmaceutical drug) is developed.14 

Licensing deals specify the set of the compound’s therapeutical applications 

(“indications”) for which commercialization rights are granted. This feature is essential 

for our empirical strategy, as it allows us to create a link between each compound and its 

degree of exposure to the downstream demand shock implied by Part D. In defining our 

sample, we drop the 3,408 deals for which the list of licensed indications is or contains 

missing data and the 1,866 for which we were not able to match to the MMS variable 

across all indications.15 Finally, we restrict the period of analysis to 1995-2014, which 

leaves us with a total of 7,224 licensing contracts in the analyzed sample.  

Because Part D impacted the demand of US consumers only, we differentiate 

between the deals that included the US in the licensed territories and those that did not. A 

deal is coded as including US territories if the “Included Territories” variable in the data 

contains “US,” “Nafta,” “North America,” or “World” and the “Excluded territories” 

variable does not contain “US,” “Nafta,” or “North America.”16 Over two thirds of the 

contracts coded as including the US territory provide worldwide commercialization 

rights. This suggests that our measurement of the cooperation response will be subject to 

an attenuation bias, since only a subset of the populations included in the territories 

covered by the commercialization rights in these contracts had their demand boosted by 

the passage of Part D.  

Table 1 presents descriptive statistics. A first observation is that most contracts in 

our sample (71%) do not include the US territory. We interpret this as a sign of firms’ 

heterogeneous competitive advantages across markets (Kyle, 2006). For example, the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14 Yet another type of collaboration can occur through mergers and acquisitions (Gans et al., 2002; Higgins 
and Rodriguez, 2006). We do not account for these in our analysis since our focus resides on the 
impediments to the type of arm’s length cooperation enabled by MFT. We acknowledge that the licensing 
and M&As markets are likely to be interconnected, but note that excluding M&A activity from our analysis 
could only introduce an attenuation bias on the identified effect of Part D on cooperation patterns. 
15 We describe the matching procedure in section 5.  
16 There is a highly significant although small correlation (0.23) between the dichotomic variable that 
indicates whether the licensing deal includes the US and that which indicates whether the in-licensing firm 
has headquarters located in the US. This is a reflection of the fact that many foreign companies (e.g., 
Novartis, Sanofi, Takeda) commercialize drugs in the US. Despite this low correlation, all our results 
remain qualitatively unaffected when we consider the location of the in-licensing firm’s headquarters 
instead of the inclusion of US territories. 
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capabilities required to commercialize compounds in Asia may be different to those 

required for South America or Africa, implying that more than one deal will typically be 

observed to allocate a compound’s ex-US commercialization rights.   

 

4. Number of prescribing physicians and the value of cooperation 

Here we describe the construction of our proxy value of cooperation --a compound’s 

number of prescribing physicians (NPP). We then describe the construction of a sample 

used to validate its use, and provide results that demonstrate the variable’s adequacy. 

 

4.1 Number of prescribing physicians 

As per our arguments in section 2, this variable should reflect the magnitude of 

investment in sales force development required for self-commercialization. We obtained 

the number of active physicians by specialty from the Association of American Medical 

Colleges “Physician Specialty Data Book” (Association of American Medical Colleges, 

2012). This source lists 36 specialties with their respective number of physicians actively 

providing patient care in the US (as of 2012). The mean number of physicians per 

specialty is about 17,000. Its high standard deviation (over 22,000) is largely driven by 

two outlier categories, general practice/family medicine and internal medicine, each of 

which has over 90,000 active physicians, and to which we refer to as “non-specialists.” 

We then asked an expert to generate a mapping between targeted conditions and 

physician specialties that are likely to prescribe treatments for each of them. The average 

number of specialties per indication was 3.2 (median 3), the standard deviation, 1.2, and 

the maximum 7. Using this indication/specialty mapping, we identified the set of unique 

specialties associated to each compound and computed NPP by summing up the total 

number of physicians associated to each of the specialties in this set. That is, if a 
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compound contains two or more indications associated to the same specialty, we only 

count that specialties’ number of physicians once.17  

The large number non-specialist physicians, fundamental ambiguity and data 

limitations introduce some inaccuracies to this procedure. The main problem is that for 

most targeted conditions it is possible to imagine a situation in which a non-specialist 

could write prescriptions.18 Data limitations play in because targeted conditions are 

reported broadly. For example, depending on the severity of the injury, a non-specialist or 

dermatologist could prescribe a drug to treat skin burns. However, data only report the 

targeted indication as “skin burns” without qualifying its degree. Fundamental ambiguity 

exists because for many conditions, both specialists and non-specialists may be 

prescribers. Take for example the case of diabetes. If an individual seeks treatment 

because she starts to feel symptoms or the disease suddenly unravels, it is more likely that 

a non-specialist will provide initial prescriptions. An endocrinologist, who will prescribe 

a more definitive treatment, will at some point, evaluate this patient. After this occurs, 

many times a non-specialist will handle follow up visits and refills.  

In our view, computing the NPP variable including non-specialties introduces 

misleading variation. This is because for multiple-indication compounds (53% and 34% 

in the pipelines and deals samples, respectively) the probabilities of including one or both 

non-specialist categories strongly increase with the number of indications, so that each 

compound’s number of indications largely drives the resulting NPP distribution. We will 

therefore primarily rely on the variation of the NPP variable constructed without 

considering non-specialist physicians. Our analysis in the next section validates this 

variable as a proxy for the value of cooperation (a relationship that still holds for the 

version of the variable that includes non-specialists). 

Figure 3 presents the Kernel distributions of the NPP variable (specialists only) 

used in for our main set of results. The distributions for the compounds in the licensing 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17 To clarify this, consider the following example. Suppose a compound has two indications. One of these is 
prescribed by cardiologists (with total number of active physicians equals to Nc) and psychiatrists (Np); the 
other, by cardiologists and gastroenterologists (Ng). The NPP value for this compound is computed as 
Nc+Np+Ng. 
18!In the constructed mapping, 55% of targeted conditions are coded as having medicines prescribed by 
internists, 79% by general practice/family medicine, and only 13% by specialties other than these two.!
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deals and pipelines data (described next) are overall very similar, although the former 

presents a slight first order stochastic dominance.19 Consequently, the median NPP for 

compounds in the pipeline data is larger (43,000 vs 39,000). Later we will illustrate 

another important feature the variability in NPP, namely that it is large and similar across 

groups of compounds with different exposure to the demand shock. 

 

4.2 Cortellis pipelines data 

Thomson Reuters Cortellis “Competitive Intelligence” data tracks pharmaceutical 

drug pipelines (clinical trials, development terminations) of broad set of firms in the 

industry. While an absolute claim cannot be made, the data are thought to account for 

virtually all compounds that reach pre-clinical development.20 This is reflected by the 

large number of compounds covered by the sample, over 55,000 by late 2014.  

For each compound we observe the list of tested indications and thus are able to 

apply the methodology described above and construct the NPP variable. We also observe 

whether each compound has been subject of cooperation in the form of a “development 

and commercialization” or “commercialization” licensing agreement. 41% in the 

compounds are subject of cooperation agreements. 

An important disadvantage of the data set is that compounds cannot be 

systematically linked to the licensing deal data, which means that we don’t observe when 

the cooperation agreement was struck or whether it includes the US territory. This 

shortcoming leaves us unable to directly test for the probability that a compound will be 

licensed after Part D and forces us to adopt the identification strategy laid out before, 

which relies on the number of observed deals. Nevertheless, by allowing us to correlate 

NPP with the probability that a compound will be licensed (at any given time), the 

pipelines data contains valuable information.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
19 This is likely due to the fact that licensing deals do not always provide commercialization rights for all 
developing indications.!
20 The company collects information from a wide variety of sources (clinicaltrials.gov and international 
counterparts, press releases, scientific articles, conference reports, company websites, industry newsletters, 
grant making bodies, among others). In private email communications with firm representatives, it has been 
stated that the sample aims to be as comprehensive as possible. All data is manually curated (by an editorial 
staff of about 500) and six-sigma methodologies employed for quality control.  
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We restrict the sample to compounds tested on clinical trials with human subjects 

before 2014.21 Since most of the compounds never reach clinical trials (or have not yet 

done so in the sample), this reduces the sample size to a total of 11,179 compounds. 

While some of these compounds have been discontinued or withdrawn from clinical 

development, their highest achieved development stage before discontinuation or market 

launch is reported. We code this into phase I (28%), phase II (37%), phase III (15%), and 

launched (20%).22  We also observe the identity of the originator firm (i.e., the firm 

responsible for the compound’s discovery), which we use to construct an indicator for the 

innovator firm’s (lack of) market presence. Firms are deemed as having no market 

presence if none of their originated compounds has been self-commercialized (i.e., 

commercialized without cooperation). 23  This definition works well for compounds 

reaching highest stages in clinical trials, but inhibits inference over the extent of 

cooperation for those compounds that reach the market (since, by definition, the 

probability of cooperation would be zero). Therefore, in this case, firms without market 

presence are defined as those having originated exactly one commercialized compound. 

With this definition, 63% of compounds in the sample are originated within firms without 

market presence. 

 

4.3 Validation 

As explained before, the sample corresponds to a snapshot of compounds 

registering clinical trial activity in 1995-2014. We produce two important findings: (i) 

NPP is strongly correlated with the probability of cooperation, and (ii) the probability of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
21 We do not consider phase IV clinical trials, which are conducted after launch. 
22 The original data set reports a noisy and incomplete variable. Its noise seems to be originated on clinical 
trial progress that has not yet been incorporated. Its incompleteness, from the fact that the highest achieved 
development stage is not reported for withdrawn compounds. We correct these problems by bringing in 
clinical trial data. In the used coding phase I includes reported “phase 1,” “phase 1a,” and “phase 1b” 
entries. Phase 2 includes “phase 1/phase 2,” “phase 2,” “phase 2a,” and “phase 2b.” Phase 3 includes 
“phase 2/phase 3,” “phase 3,” “phase 3a,” and “phase 3b.” We also code as having reached phase 3 those 
compounds that reach the FDA pre-registration or registration stage (these correspond to less than 2% of all 
compounds coded as reaching phase 3). 
23  Results do not significantly change when we instead define no market presence as having no 
commercialized compound at all (i.e., with or without cooperation).  
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cooperation is generally high, particularly for innovator firms without presence in the 

downstream market.   

 Table 2 presents the probability of cooperation and number of compounds 

reaching different stages, by NPP quartile (NPP does not include non-specialists). This 

probability is computed as the mean of a dichotomic variable that equals 1 if a compound 

registers a cooperation agreement (and 0 otherwise) within each NPP quartile/stage cell. 

We present results for the whole sample of compounds (panel A) and also for a 

subsample of compounds originated in firms without market presence (panel B). Making 

this distinction allows us to control for the fact some innovators (those with market 

presence) may have in place distribution channels and other assets required for 

commercialization.  

The probability of cooperation increases both with the highest achieved stage and 

NPP. This finding is robust across subsamples (firms with and without market presence). 

The slopes across subsamples are similar, but baseline probabilities of cooperation are 

higher for firms without market presence. For firms lacking market presence self-

commercialization implies a sunk cost associated generating brand recognition, and 

assembling and training a sales force. For firms with market presence, brand recognition 

and an assembled sales force may be in place, but additional marketing activities, re-

training or additional hiring may be required if novel compounds target a different 

physician population. Overall, for compounds that have been launched, the probability of 

cooperation is 0.62 in the lowest NPP quartile and 0.74 in the highest quartile. For 

compounds originated within firms without market presence, these probabilities are 

respectively 0.66 and 0.78.  

Estimates from linear probability models presented in table 3 (panel A) estimated 

on stage-specific samples crystalize these patterns. As reflected by the models’ constants, 

baseline cooperation probabilities increase throughout stages, with particularly large 

increases at the two higher stages. The significant increase in the baseline probability of 

cooperation from phase I to phase II may be justified by the relative complexity of the 

latter type of trials (Danzon et al., 2005), but also the fact that phase II “proof of concept” 

trials are usually considered pivotal, therefore reducing the amount of uncertainty 



! 20!

regarding the probability of obtaining regulatory approval and facilitating negotiations. 

As argued by Hermosilla (2015), this is also consistent with strategic time-to-license 

decisions by biotech firms who anticipate more attractive licensing contracts at late 

development stages. A further reduction in uncertainty may underlie the even larger 

increase in the baseline probability of cooperation observed from phase III to launched 

compounds.  

From the point of view of our analysis, the main result is the systematic and 

highly significant positive correlation between NPP and the probability of cooperation.24 

This result holds even after controlling for firms’ market presence, suggesting that the 

commercialization of each new compound implies additional investment in distribution 

channels. For compounds that reach Phase II of clinical trials, the estimate suggests that 

increasing the number of prescribing physicians one standard deviation increases the 

probability of cooperation by about 7 points. We believe that this evidence supports the 

validity of NPP as a proxy for the intrinsic value of cooperation (v).  

Panel B of table 3 corroborates this conclusion with estimates obtained with the 

NPP variable that includes non-specialist physicians. Aside from the obvious differences 

caused by the different scaling of variables, estimates are very similar. This is comforting 

in that it suggests that inaccuracies in the computation of the NPP variable should not 

severely damage its informational content. Due to the high number of indications coded 

in our data as prescribed by non-specialists (87%), we believe that the version of the NPP 

variable which does not include non-specialists is a more reliable proxy for the intrinsic 

value of cooperation. Hence, this is the version we use in the remainder of our analysis. 

 

5. Medicare Part D 

5.1 The Program 

Medicare is an important social insurance program in the United States, providing 

medical insurance primarily for the elderly (65 years and older) and disabled. Since its 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
24!This result also holds true in the estimates of (unreported) models that do not account for market 
presence.!
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creation in 1965, Medicare has covered beneficiaries’ inpatient and outpatient 

expenditure through Medicare Part A and Part B, but offered little prescription drug 

coverage until recently. In December 2003, Medicare Part D was enacted as part of the 

Medicare Modernization Act to provide outpatient prescription drug insurance to 

Medicare beneficiaries. The program was implemented in January 1, 2006.  

Part D is a large-scale program, both in terms of the number of enrollees and its 

cost. In 2006, there were 26 million Medicare beneficiaries enrolled in Part D. The 

annual program cost was about 50 million in 2008 and about 63 billion in 2012, implying 

that the average expenditure per-patient was close to $2,000 in 2008. The Congressional 

Budget Office (2014) predicts that the total program costs will grow to $76 billion by 

2015.  

By various accounts, Part D was a significant shock to the industry. Blume-

Kohout and Sood (2013) and Dranove et al. (2014) find the program incentivized the 

innovation of more prescription drugs targeting the conditions that are more prevalent 

among enrollees.25The program was also found to have increased prescription drug usage 

among enrollees by between 4.7% and 5.9% (Ketcham and Simon, 2008; Yin et al., 

2008).26  

It is possible that some of compounds in deal data were not meant to be 

commercialized as prescription drugs but instead be used for in-patient care. These types 

of treatments are usually not covered by Part D, but by Part B. This suggests that our 

empirical estimate of the cooperation response to the program may be affected by an 

attenuation bias. However, as discussed by Dranove et al. (2014), Part D provided 

coverage for many drugs used for in-patient treatments, including many of the top-selling 

biologic cancer treatments in 2009-2012. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
25 Later we will address the possibility that these endogenous supply effects could confound our inference.  
26!Unlike traditional government-sponsored programs, the benefits entailed Part D are delivered to 
Medicare enrollees by private insurance companies. These firms design formularies (i.e., coverage plans), 
which specify the magnitude and breadth of prescription drug coverage. Consumers then choose among 
these plans. The government, represented by Center for Medicare and Medicaid Services (CMS), limits its 
role to setting up basic guidelines and is prohibited by law from directly bargaining with pharmaceutical 
firms.  
!
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5.2 Sizing Part D’s Demand Shock  

In order to size the magnitude of the demand shock posed by Part D across 

therapeutical categories, we adopt the approach of previous research (Duggan and Scott-

Morton, 2010; Blume-Kohut and Sood, 2013; Dranove et al., 2014) by creating a variable 

that measures the extent to which expenditure on a given drug is expected to come from 

prescriptions issued to Medicare enrollees. As in these previous papers, we label this 

variable “Medicare Market Share” (MMS). 

To construct this variable we utilize data from the Medical Expenditure Panel 

Survey (MEPS),27 a large, representative sample of US individuals’ medical service 

utilization, including suffered conditions and the availability and type of insurance. Using 

the 2003 MEPS insurance!and!conditions!files, we compute MMS as the percentage of 

individuals that suffer a particular condition that are Medicare enrollees. Thus, the 

domain of MMS is the unitary interval and a value of 0.5 for a specific condition 

indicates that 50% of the population suffering that condition in 2003 was enrolled in 

Medicare during that same year.  

A limitation of the MEPS data is that specific conditions suffered by each 

individual are not reported by their name or coded granularly. Instead, they are reported 

by their corresponding ICD-9 therapeutic category. The International Statistical 

Classification of Diseases and Related Health Problems (ICD) is a widely used 

therapeutical classification system maintained by the World Health Organization and 

used to monitor worldwide morbidity and mortality statistics, aid in reimbursement 

processes and automated decision support in healthcare.28 At its most granular level, the 

ICD9 system achieves a great deal of precision. However, MEPS reports conditions are 

reported at their least granular level, which has about 800 broad therapeutical categories. 

We thus bridge indications in our data to MEPS insurance variability at this level. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
27 MEPS data are available for download at http://meps.ahrq.gov/mepsweb/.  
28 About 70% of worldwide expenditure is allocated using this system for reimbursement. 
http://www.who.int/classifications/icd/en/ 
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Indications in the deal data cover 284 of such categories, with an average of 2.75 

conditions per category.  

Figure 6 presents the kernel distribution of MMS scores across indications 

associated to the compounds in the licensing data. Overall, there is substantial 

heterogeneity and patterns of variation result fairly intuitive as the epidemiological 

characteristics of conditions with high MMS scores are those one would associate with 

Medicare enrollees (i.e., 65 years and above). For example, at the bottom of the 

distribution, with MMS scores below 0.1, we observe conditions like growth hormone 

deficiency, attention deficit disorder and acne. With MMS scores between 0.2 and 0.3 

there are, for example, conditions like myopia and psoriasis. More Medicare-oriented 

diseases include hyperlipidemia, chronic bronchitis and hypertension (MMS between 0.4 

and 0.5). At the top of the distribution there are conditions like cardiac failure, cataracts, 

Alzheimer’s and Parkinson’s disease (all with MMS scores above 0.8), which are 

typically suffered by relatively older people. The median of this distribution is 0.32.  

Licensing deals typically estipulate the rights to commercialize a multiple 

indications of a single compound. In our data, this is the case for 82% of deals, with an 

average number of 1.7 licensed indications per deal and a standard deviation of 1.5. In 

rigour, a compound’s exposure to the Part D shock depends on all of the covered 

indication’s individual MMS scores, weighed by a function of their individual stage of 

development at licensing (as a proxy for the probability of obtaining regulatory 

approval). Our data, however, only provides information about the highest stage of 

development at licensing among all included indications. We thus base our empirical 

analysis on the dichotomic variable DMMS, which equals 1 at least one above-median 

MMS indication is licensed, and zero otherwise. This definition implies that DMMS=1 

compounds were relatively more exposed to the demand shock than DMMS=0 

compounds. While there is within-deal MMS heterogeneity, most variability (60%) arises 

at the between-deal level, implying that this aggregation remains informative. This said, 

we acknowledge that this coding may introduce an attenuation bias. We accept this 

inferential cost because this procedure greatly simplifies the analysis, but also because 

our main interest resides on identifying the cooperation response rather than 

implementing an accurate measurement. In the remainder of the analysis we will 
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interchangeably use “DMMS=1” deals with “Medicare-oriented” deals and “high 

(demand shock) exposure” deals. 

An important feature of the data is the joint variability of DMMS and NPP. Our 

discussion above presented NPP as a proxy for the intrinsic value of cooperation, a driver 

of the scaled value of cooperation that operates through mechanisms other than 

downstream demand. In order to locate the cooperation response along the distribution of 

cooperation values, it is required for DMMS to offer variation across NPP levels. The 

raw correlation between the variables is low, at about 0.11. Moreover, at all levels of 

NPP there is substantial heterogeneity in DMMS. This is illustrated by table 4, which 

shows that the percentage of DMMS=1 deals across quartiles of NPP range between 54% 

and 84%.  Patterns of variation across quartiles are moreover similar for deals including 

and not including US territories. 

 Finally, the variation of DMMS and NPP seems to be largely independent from 

each compound’s baseline demand. We evaluate this patterns using additional data from 

the 2003 MEPS survey: total number of patients, total number of prescriptions and total 

expenditure in prescription drugs.29 Table 5 presents the correlations of the MMS and 

NPP 30  variables with each of these proxies. These correlations are occasionally 

significant at conventional confidence levels, but in every case very close to zero. Figures 

5a and 5b further show wide dispersion of each of these variables at all levels of MMS 

and NPP. This evidence is consistent with our independence assumptions of section 2.2. 

Nevertheless, we recognize that unaccounted determinants of market potential (such as 

number of competitors) may be relevant, introducing a degree of unobserved correlation.  

 

6. The Cooperation Response  

Figure 1 evidenced our main results, a strong, short-termed licensing response in 

the drug licensing market fueled by the downstream demand shock entailed by Part D. In 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
29 All variables are at the ICD9 integer level. Includes all individuals in the 2003 MEPS data (i.e., enrollees 
and non-enrollees of Medicare). 
30 As opposed to the rest of our analysis, in this case with consider the number of prescribing physicians at 
the indication level. Does not include non-specialists. 
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this section we present further evidence, which corroborates statistically and further 

explore the nature of the effect.  

 

6.1 Main effects 

We start by analyzing the trends in the number of deals including and not 

including the US. Table 6 breaks down the yearly average number of deals by time 

periods and DMMS. Drawing from the trends in figure 1.1, we break down the 20 years 

of data into three periods: 1995-2003 (period 1), 2004-2010 (period 2), and 2011-2014 

(period 3).  

The number of DMMS=1 deals is systematically larger than that of DMMS=0 (by 

a factor of about 2). The stability of this relationship across time periods is more 

notorious among deals that do not include the US, which lends support our identification 

assumption of a constant !. The greater proportion of DMMS=1 deals arises in part due 

to the construction of the variable31 but also as a reflection of upstream innovators’ 

relative focus on cancer treatments, which is more frequently observed among older 

individuals.32 Our econometric specifications below will capture this effect by including 

DMMS as an independent variable.  

In period 2, immediately following the enactment of Part D, the average number 

of DMMS=1 deals including the US increased by 73%, much more than the growth in the 

average number of DMMS=0 deals (44%) including the US. This difference is consistent 

with a cooperation response unfolding between 2004 and 2010. After 2010, in period 3, 

the average number of each type of deal returned to levels close to the ones originally 

observed in period 1.   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
31!To see this, recall that DMMS equals one if at least one of the compound’s indications has an above-
median MMS score. For single indication compounds, the probability of DMMS=1 equals the probability 
that the single indication will have an above-median score, that is, 0.5. For multiple indication compounds, 
however, the probability of DMMS=1 equals the sum of the probability that each of the compound’s 
indications will have an above-median score. As we mentioned earlier, 82% of the licensing deals contain 
more than one indication implying a higher baseline higher probability of DMMS=1 than DMMS=0. 
32 Other studies analyzing patterns in drug development (Giovanetti and Jaggi, 2012; Dranove et al., 2014) 
show that about half of indications originated in biotech firms and entered to clinical trial development 
target a cancer condition.  
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A relative increase in the period 2 average number of DMMS=1 deals also 

occurred among agreements not including commercialization in the US. This difference 

was, however, much smaller than for deals including the US. A higher baseline increase 

of US deals is justified because Part D also affected DMMS=0 deals (as their indications 

are associated to positive MMS values), so that the relevant comparison is the relative 

difference between the licensing activity of DMMS=1 and DMMS=0 deals, for deals that 

include and do not include the US. For deals not including the US, this difference was 

much smaller.  

Contrary to the patterns observed for deals including the US, the number of deals 

not including the US did not return to the original pre-2003 levels. The average number 

of DMMS=0 not including the US continued its period 2 expansion (almost 30% than in 

period 1), while and that of DMMS=1 deals slightly contracted with respect to period 2, 

remaining at almost 120% the level of period 1. It is hard to provide a conclusive 

interpretation of this phenomenon. One possibility is that the 2008 subprime crisis 

impacted upstream innovators around the world with different intensities and at different 

times. Lerner et al. (2002) show that the availability of financing from public investment 

markets may condition the structure of financing of biotech firms. Facing a depressed 

equity financing market after the 2008 subprime crisis, biotech firms may have increased 

the reliance of licensing-based financing. Time differentiated effects across local 

financing markets around the world and the higher participation of ex-US out-licensors in 

deals not including the US,33 may thus have configured these trends.     

Estimates presented in table 7 are derived from Poisson count models with robust 

standard errors. The dependent variable is in column 1 aggregates the number of deals 

including the US; those of column 2, deals not including the US. In both cases, deals are 

aggregated within each year/DMMS cell. Thus, because we have a 20-year sample, 

models are estimated each with 40 observations. The dependent variables include the 

dichotomic DMMS indicator, as well as its interactions with the PERIOD2 and 

PERIOD3 indicators. The latter variables are individually omitted because models 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
33 Across time periods, the participation of US and ex-US out-licensors in deals including the US is 
approximately even. For deals not including the US, the participation of each type of out-licensor is higher 
(60%) for ex-US out-licensors during periods 2 and 3. 
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include year specific fixed effects, which capture the potential confounding effects of 

varying macroeconomic conditions. 

The estimated coefficient associated to DMMS quantifies the baseline licensing 

propensities between the compounds that contain an above-median MMS indication and 

those that do not. The estimated coefficient is similar across samples, in both cases 

positive and statistically significant at a 99% confidence level.  

The magnitude of the cooperation response is given by the coefficient associated 

to the interactions of DMMS with PERIOD2 and PERIOD3. For compounds including 

the US, the interaction with PERIOD2 is positive and significant at the 95% confidence 

level. Its magnitude implies that, controlling for macroeconomic conditions, Part D 

caused an increase in the licensing of DMMS=1 compound of about 15% during 2004-

2010. Consistent with our previous results, the interaction with PERIOD3 is smaller and 

not statistically significant, suggesting that the effect was limited to period 2. In contrast, 

for deals not including the US, there is no meaningful impact during period 2, and a 

relative decrease of DMMS=1 licensing during period 3.  

 

6.2 Mapping the cooperation response along the distribution of cooperation 

values    

 Our model implies that there will only be a cooperation response if transaction 

costs are large enough with respect to the intrinsic value of cooperation. That is, if 

!/! > 0. Intuitively, only if transaction costs represent a meaningful fraction of the value 

of cooperation there will be a pool of forgone deals -the “deals not done” (Agrawal et al., 

2014)- from which the cooperation response will draw.  

 This notion gives us an opportunity to identify the type of compounds that make 

up for the pool of forgone deals. In particular, to which extent do compounds associated 

to high !’s enter this pool? If the contribution is relatively uniform across the distribution 

of !, then the number of forgone deals is an unbiased indicator of the efficiency burden 

imposed by transaction costs. On the other hand, if low-! compounds make up for most 



! 28!

of the pool of forgone deals, then the number of forgone deals overemphasizes this 

efficiency cost.  

Figure 7 presents evidence suggesting that the cooperation response focused on 

low-!! compounds. We compute the relative increase in the yearly average of year deals 

in 2004-2010 relative to those in 1995-2003, by NPP quartile and deal type 

(DMMS=0,1). In 2004-2010, the yearly average number of DMMS=1 deals in the lowest 

quartile increased by about 160% with respect to its 1995-2003 baseline. On the other 

hand, DMMS=0 deals in this quartile, increase by 45% only. For compounds in the three 

upper quartiles, the relative increase was relatively similar across DMMS levels. That is, 

figure 5 suggests that the cooperation response focused exclusively on the lowest quartile 

of our proxy for !.  

Table 8 corroborates this conclusion with estimates of our main Poisson 

specification, which controls for the variability in the public financing environment by 

including year specific fixed effects. Each column presents coefficients estimated on 

subsamples composed of compounds belonging to each of the NPP quartiles. Results 

show that the cooperation response identified earlier concentrated on compounds in the 

first quartile. The coefficient implies an even larger effect than that estimated before: Part 

D caused an increase of about 60% in the licensing of DMMS=1 compounds in the 

lowest quartile of the distribution of intrinsic values of cooperation. For compounds in 

the three upper quartiles, the effect is much smaller and not statistically significant at 

conventional confidence levels.  

At this point it is also worthwhile to underline that our estimates of the 

cooperation response should be interpreted as a lower bound for the actual effect. We 

mentioned earlier that this attenuation bias could exist because many of the deals that 

include the US specify worldwide commercialization rights, but also because the DMMS 

aggregation washes away some variability regarding compounds’ true exposure to the 

Part D demand shock. Another contributing factor is grounded on the results of the 

previous section, namely, that the cooperation response focuses on compounds 

undergoing clinical trials. The high attrition rate in drug development implies that a 

downstream demand shock should be adjusted down by the probability of obtaining 
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regulatory approval in order to generate an estimate of the elasticity of the probability of 

cooperation with respect to downstream market potential size. Considering the 0.62 

estimate for compounds in the lowest NPP quartile and the various sources of attenuation 

bias, it could be possible for this elasticity to exceed 1. 

This section’s findings suggest that for 75% of compounds associated with higher 

intrinsic values of cooperation, there is not a meaningfully large pool of forgone deals. In 

other words, for these compounds transaction costs do not severely preclude valuable 

cooperation. As we conclude, in the next section we put this result in context and discuss 

its limitations and implications. 

 

7. Short-term response and endogenous supply  

Blume-Kohout and Sood (2013) and Dranove et al. (2014) show that Part D had 

an impact on the supply of compounds, inducing firms to introduce more Medicare-

oriented compounds to clinical trials after 2003. In this section we investigate the extent 

of these potentially confounding endogenous supply effects by exploiting short-term 

patterns of the cooperation response. 

We turn our attention to this matter because an increase in licensing activity 

purely driven by endogenous supply effects implies that the cooperation response (as 

given by our framework) did not exist. In terms of the validity of our assumptions, an 

endogenous supply effect would imply that a higher percentage of Medicare-oriented 

compounds entered the MFT after 2003. That is, ! decreased. Nevertheless, our results 

suggest that the cooperation response indeed existed, since the increase in licensing 

activity operated in the short-term, anticipating endogenous supply effects.  

Before we examine the unfolding of increased cooperation in our data, we revisit 

the results of Blume-Kohout and Sood (2013) and Dranove et al. (2014). Using a large 

sample of developing drugs in the pharmaceutical industry (primarily focused on 

compounds developed in-house or in-licensed by “Big Pharma” firms) Blume-Kohout 

and Sood (2013, table 2) show that the endogenous supply effect did not operate until 

2006. With a different sample (focusing on compounds originated on Biotech firms), 
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Dranove et al. (2014, table 2) obtain the same result. That is, both papers find that the 

increased clinical trial activity of Medicare-oriented compounds did not take place until 

2006, the bulk of it occurring between 2008 and 2011. This result is not surprising given 

the fact that bringing new compounds or indications to clinical trials is a time-consuming 

procedure, which requires significant pre-clinical testing and the filing of an IND 

(investigative new drug) application to the FDA.  

When we reproduce our the estimates of our main model (table 7, column 1) in a 

sample excluding licensing deals after 2005, the diff-in-diff coefficient that reflects the 

cooperation response remains positive and statistically significant (99% confidence), with 

a value that slightly exceeds that obtained in the full sample (0.17 vs 0.15). While this 

evidence is consistent with the existence of a cooperation response, it does not rule out 

that this increase in licensing activity could have been focused on “endogenously 

innovated” early stage compounds. To further explore this possibility, we look at the 

unfolding of the cooperation response for compounds in different stages of the 

development process.  

Table 9 shows the short-term dynamics of the cooperation response. The reported 

statistic is computed as the ratio of the total number of licensing deals (including the US) 

that were signed on each year after 2003 to the number of deals signed in 2003. Thus, the 

second number in column 4 (1.9) means that in 2004 there were 90% more DMMS=1 

licensing deals of compounds in being tested in clinical trials than there were in 2003. On 

the other hand, the second number of column 3 (1.2) suggests that in 2004 there were 

only 20% more DMMS=0 licensing deals of compounds in clinical trials than there were 

in 2003.  

These two numbers illustrate the main result in the table. The cooperation 

response of compounds in clinical trials was instantaneous, preceding the endogenous 

supply effects identified by Blume-Kohout and Sood (2013) and Dranove et al. (2014). 

Relative to 2003 levels, the licensing of DMMS=1 compounds almost doubled initially 

and more than doubled in the years that followed. For DMMS=0 compounds in clinical 

trials, there was a mild initial increase in licensing, but which was later reverted. The 

licensing of early stage compounds (in the discovery stage, columns 1 and 2) 
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experimented a milder increase relative to 2003 levels, but which was less differentiated 

across DMMS levels. Together, the lack of short-term response in cooperation among 

early stage compounds and the large response among compounds in clinical trials negates 

the possibility that the increase in licensing activity was driven by endogenous supply 

effects.  

The intensity of the short-term response for compounds in clinical trials further 

suggests that Part D may have the catalyzed negotiations ongoing in 2003 by enlarging 

the bargaining core (Lerner et al., 2002) making it easier for firms to agree to fair terms. 

This bargaining core effect was presumably much smaller or null for early stage 

compounds since, as discussed in section 2, they usually lack consolidated patent 

portfolios thus making many firms reluctant to engage in negotiations. Consequently, no 

cooperation response was observed among compounds in the discovery stage. 

In addition, the gradual increase in the cooperation over clinical trial compounds 

is consistent with firms intensifying search. The rate of increase of DMMS=1 licensing 

deals after 2004 is, however, less significant and mainly coincides with the time the 

endogenous supply kicked in. 

Finally, we note that the lack of a cooperation response among launched 

compounds is consistent with lower transaction costs. After compounds are launched, 

uncertainty over market potential is much smaller, which is likely to greatly simplify the 

negotiation process. In addition, search costs are likely to be smaller, since after years of 

development and regulatory scrutiny, compounds’ are well known by the set of potential 

partners. Furthermore, as suggested by Kyle (2006), there may be large gains from 

cooperating with local commercializing firms. In sum, for launch compounds we should 

expect !/! to be relatively low. As prescribed by our characterization of the cooperation 

response in section 2, in these cases the cooperation response will be weak, if existing at 

all. 
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8. Conclusions 

An assessment of the literature exploring the functioning of Markets for Technology 

(MFT) surfaces a consensus on the idea that transaction costs may delay and hamper 

valuable cooperation between innovating and commercializing firms. To the best of our 

knowledge, this paper constitutes the first deliberate attempt to place context around the 

magnitude of the efficiency burden imposed by these frictions. Based on the importance 

of MFT to innovation and growth we believe this to be an important line of research. 

We exploit the impact of the 2003 enactment of the Medicare Part D program on the 

drug licensing market to shed light on the matter. This program constituted a significant 

expansion of prescription drug coverage for Medicare enrollees, effectively increasing 

downstream consumer demand for drugs targeting conditions that are more prevalent 

among the enrolled population (65 years and older). We document a strong, short-term 

surge of licensing-based cooperation for the development and commercialization of 

pharmaceuticals targeting the therapeutical conditions that are more prevalent among the 

Medicare population. 

Theoretically, this surge can only be rationalized if transaction costs operate in the 

market. This is so because only if transaction costs are large enough there will be a set of 

compounds for which cooperation is precluded at the baseline demand level. It is from 

this set that the new deals sustaining the surge in cooperation are drawn. By generating a 

measure for the value cooperation would add to a compounds’ cooperative 

commercialization, we find that the increased licensing activity focused on the 25% of 

compounds at the bottom of this distribution, implying that transaction costs do not 

impede cooperation in the 75% of cases when it is most valuable. It follows that the 

welfare cost associated to the existence transaction costs in this market will be 

overestimated when measured solely by the number of “deals not done” (Agrawal el al., 

2014). 

The validity of this result hinges on a number of issues. One first caveat regards the 

quality of our proxy for the value of cooperation. We construct this measure by 

exploiting the variability in the magnitude of replicative investment required for self-

commercialization by upstream innovators. Our analysis of cooperation patterns in a 
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large sample of developing compounds provides strong validation for the measure but 

does not rule out the possibility that the inclusion of other factors, such as those 

stemming from pair-wise heterogeneity in the quality of matching, could translate into a 

different ordering. Judging from the large importance of distribution costs in the industry 

(Donohue et al., 2007; Silverman, 2014) we believe that refinements to this proxy are 

unlikely to overturn our conclusions. Nevertheless, we think that these concerns warrant 

further research and in ongoing work we seek to provide more concrete evidence on the 

matter.  

It is possible that some of the neglected cooperation at the lowest quartile of the 

distribution of cooperation values is self-fulfilling. Various sources have documented or 

referred to a degree of misalignment between the objectives of commercializing firms 

and those of the scientists responsible for the discovery and development of biotech 

compounds (Murray 2002; Gittelman and Cogut, 2003; Stern, 2004; Pisano, 2006). 

Therefore, it is possible that, in order to work independently, leading scientists at biotech 

firms choose to develop those compounds for which self-commercialization is relatively 

less costly, that is, those compounds for which investment in distribution channels is 

relatively small. This strategy may have become more attractive along with the rise of 

personalized medicine and the incentives posed by the Orphan Drug Act,34 which 

increase the relative value of self-commercialization for compounds targeting small 

populations of patients. To the same extent that we give this idea some credence, we 

should adjust down our estimate of the efficiency burden posed by transaction costs.  

The construction of our proxy for the value of cooperation also calls for a precision in 

the interpretation of our results. Cooperation is valuable not only because it avoids 

replicative investment, but also because it may exploit complementary expertise useful 

during the development process. These synergies could act by increasing the quality of 

the final product, the probability of reaching the market, or by reducing time-to-market. 

However, collaboration unfolds only gradually throughout stages, suggesting that these 

gains are not fully materialized despite their relevance in the industry. In this sense, 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
34 The Orphan Drug Act offers important incentives for the development of rare “orphan” diseases (i.e., less 
than 200,000 patients in the US). The rise of personalized medicine has prompted a subdivision of 
traditional definitions of diseases based on genetic-based heterogeneous responses to treatments (Yin, 
2008), creating many “new” diseases that fall in the orphan category.  
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transaction costs are “paid” in the form of forgone benefits of complementary expertise 

during development. By the same logic, transaction costs are also “paid” in the form of 

costly and lengthy search and negotiations.  

When focusing on the sample of compounds in the lowest quartile of the distribution 

of cooperation values (as given by our proxy), our estimates suggest that cooperation 

increased by about 60% for the compounds with relatively higher exposure to the demand 

shock. There are, however, various reasons to believe that this estimate is afflicted by an 

attenuation bias.  This means that the elasticity of cooperation with respect to market size 

could well exceed unity.  

While we do not explicitly model individual firm behavior, our framework is 

consistent with commercializing firms acting as agents for commercialization whose 

main role is to source embryonic technologies from the MFT, develop them into final 

products and allocate them to consumer demand. An interesting tension arises under this 

view. Effective commercializers would screen technologies on their expected market 

profitability, refraining from in-licensing those with low potential. This means that the 

forgone cooperation that has been typically been attributed to contracting frictions by the 

“supply side” literature (Arora and Gambardella, 2010) could potentially be rendered as 

an efficient outcome. Evaluating this hypothesis, however, requires the collection of 

additional and possibly tailored econometrics, which lies beyond the scope of this paper. 

Sharing Arora and Gambardella’s (2010) call for an increased focus on the “demand 

side” of MFT, we believe that further theoretical and empirical work would be useful to 

better understand the determinants, nuances and implications of statistics such as the 

elasticity of licensing to downstream market size.  

  

 



! 35!

References 
 
Aghion, P., & Tirole, J. (1994). The management of innovation. The Quarterly Journal of Economics, 

1185-1209. 

Agrawal, A., Cockburn, I., & Zhang, L. (2014). Deals not done: Sources of failure in the market for 
ideas. Strategic Management Journal. 

Allain, M. L., Henry, E., & Kyle, M. K. (2011). Inefficiencies in technology transfer: theory and empirics. 
Centre for Economic Policy Research. 

Anand, B. N., & Khanna, T. (2000). The structure of licensing contracts. The Journal of Industrial 
Economics, 48(1), 103-135. 

Anton, J. J., & Yao, D. A. (1994). Expropriation and inventions: Appropriable rents in the absence of 
property rights. American Economic Review, 190-209. 

Arora, A., Fosfuri, A., & Gambardella, A. (2001). Markets for technology: The economics of innovation 
and corporate strategy. MIT press. 

Arora, A., & Gambardella, A. (2010). Ideas for rent: an overview of markets for technology. Industrial and 
corporate change, 19(3), 775-803. 

Arrow, K. (1962). Economic welfare and the allocation of resources for invention. In The rate and 
direction of inventive activity: Economic and social factors (pp. 609-626). NBER. 

Association of American Medical Colleges (2012). Physician Specialty Data Book. 

Branstetter, L. G., Fisman, R., & Foley, C. F. (2006). Do Stronger Intellectual Property Rights Increase 
International Technology Transfer? Empirical Evidence from US Firm-Level Panel 
Data. Quarterly Journal of Economics, (1), 321-348. 

Blume-Kohout, M. E., & Sood, N. (2013). Market size and innovation: Effects of Medicare Part D on 
pharmaceutical research and development. Journal of public economics, 97, 327-336. 

Booth, Bruce (2014), Transformational Late Stage Drugs Delivered Through Deal-Making, Forbes. 
Retrieved March 22, 2014, from 
http://www.forbes.com/sites/brucebooth/2014/03/21/transformational-late-stage-drugs-delivered-
through-deal-making/. 

Bosse, D. A., & Alvarez, S. A. (2010). Bargaining power in alliance governance negotiations: evidence 
from the biotechnology industry. Technovation, 30(5), 367-375. 

Cassiman, B., & Veugelers, R. (2006). In search of complementarity in innovation strategy: Internal R&D 
and external knowledge acquisition. Management science, 52(1), 68-82. 

Congressional Budget Office (2014). Estimated Effects on Direct Spending and Revenues for Health Care 
Programs of Proposals in the President’s 2015 Budget, retrieved from 
http://www.cbo.gov/sites/default/files/cbofiles/attachments/45250-Health_Programs_Proposals.pdf. 

Danzon, P. M., Nicholson, S., & Pereira, N. S. (2005). Productivity in pharmaceutical–biotechnology 
R&D: the role of experience and alliances. Journal of health economics, 24(2), 317-339. 

Delgado, M., Kyle, M., & McGahan, A. M. (2013). Intellectual property protection and the geography of 
trade. The Journal of Industrial Economics, 61(3), 733-762. 

Donohue, J. M., Cevasco, M., & Rosenthal, M. B. (2007). A decade of direct-to-consumer advertising of 
prescription drugs. New England Journal of Medicine, 357(7), 673-681. 

Dranove, D., Garthwaite, C., & Hermosilla, M. (2014). Pharmaceutical Profits and the Social Value of 
Innovation. NBER WP 20212. 

Dranove, D., & Meltzer, D. (1994). Do important drugs reach the market sooner? RAND Journal of 
Economics, 402-423. 



! 36!

Duggan, M., & Morton, F. S. (2010). The Effect of Medicare Part D on Pharmaceutical Prices and 
Utilization. American Economic Review, 100(1), 590-607. 

Forman, C., Goldfarb, A., & Greenstein, S. (2008). Understanding the inputs into innovation: Do cities 
substitute for internal firm resources? Journal of Economics & Management Strategy, 17(2), 295-
316. 

Galasso A., M. Schankerman and C. Serrano (2013). Trading and Enforcing Patent Rights, RAND Journal 
of Economics 44, 275-312. 

Gans, J. S., Hsu, D. H., & Stern, S. (2002). When Does Start-Up Innovation Spur the Gale of Creative 
Destruction? RAND Journal of Economics, 571-586. 

Gans, J. S., Hsu, D. H., & Stern, S. (2008). The impact of uncertain intellectual property rights on the 
market for ideas: Evidence from patent grant delays. Management Science, 54(5), 982-997. 

Gans, J. S., & Stern, S. (2003). The product market and the market for “ideas”: commercialization 
strategies for technology entrepreneurs. Research policy, 32(2), 333-350. 

Giovanetti, G. T., & Jaggi, G. (2012). Beyond Borders: Global Biotechnology Report 2012. Ernst & 
Young.  

Gittelman, M., & Kogut, B. (2003). Does good science lead to valuable knowledge? Biotechnology firms 
and the evolutionary logic of citation patterns. Management Science, 49(4), 366-382. 

Hellmann, T. (2007). The role of patents for bridging the science to market gap. Journal of Economic 
Behavior & Organization, 63(4), 624-647. 

Hermosilla, M. (2015). Imperfect Outsourcing of Technological Innovations. Working Paper.  

Higgins, M. J., & Rodriguez, D. (2006). The outsourcing of R&D through acquisitions in the 
pharmaceutical industry. Journal of Financial Economics,80(2), 351-383. 

Jensen, R., & Thursby, M. (2001). Proofs and Prototypes for Sale: The Licensing of University 
Inventions. The American Economic Review, 91(1), 240-259. 

Ketcham, J. D., & Simon, K. I. (2008). Medicare Part D's Effects on Elderly Patients' Drug Costs and 
Utilization. The American journal of managed care, 14(11). 

Kyle, M. K. (2006). The role of firm characteristics in pharmaceutical product launches. RAND journal of 
economics, 37(3), 602-618. 

Lamoreaux, N. R., & Sokoloff, K. L. (1999). Inventors, firms, and the market for technology in the late 
nineteenth and early twentieth centuries. In Learning by doing in markets, firms, and 
countries (pp. 19-60). University of Chicago Press. 

Lerner, J., & Malmendier, U. (2010). Contractibility and the Design of Research Agreements. American 
Economic Review, 100(1), 214-246. 

Lerner, J., & Merges, R. P. (1998). The control of technology alliances: An empirical analysis of the 
biotechnology industry. The Journal of Industrial Economics, 46(2), 125-156. 

Lerner, J., Shane, H., & Tsai, A. (2003). Do equity financing cycles matter? Evidence from biotechnology 
alliances. Journal of Financial Economics, 67(3), 411-446. 

Levine, A. (2009). Licensing and Scale Economies in the Biotechnology Pharmaceutical Industry. Working 
Paper.  

Malerba, F., & Orsenigo, L. (2002). Innovation and market structure in the dynamics of the pharmaceutical 
industry and biotechnology: towards a history!friendly model. Industrial and corporate 
change, 11(4), 667-703. 

Mossinghoff, G. J. (1999). Overview of the Hatch-Waxman Act and its impact on the drug development 
process. Food & Drug LJ, 54, 187. 



! 37!

Murray, F. (2002). Innovation as co-evolution of scientific and technological networks: exploring tissue 
engineering. Research Policy, 31(8), 1389-1403. 

Patrick, G. L. (2013). An introduction to medicinal chemistry. Oxford university press. 

Pisano, G. P. (1997). R&D Performance, Collaborative Arrangements and the Market for Know-How: A 
Test of the "Lemons" Hypothesis in Biotechnology. Harvard Business School, Working Paper. 

Pisano, G. P. (2006). Science business: The promise, the reality, and the future of biotech. Harvard 
Business Press. 

Serrano, C. J. (2010). The dynamics of the transfer and renewal of patents , RAND Journal of Economics, 
Vol. 41, No. 4, pp. 686-708. 

Silverman, E. (2014). The Pharmaceutical Sales Rep Lives to Fight Another Day. The Wall Street Journal. Available at 
http://blogs.wsj.com/corporate-intelligence/2014/03/13/the-pharmaceutical-sales-rep-lives-to-fight-another-day/ 

Stern, S. (2004). Do scientists pay to be scientists? Management science, 50(6), 835-853. 

Teece, D. J. (1986). Profiting from technological innovation: Implications for integration, collaboration, 
licensing and public policy. Research policy, 15(6), 285-305. 

Thomas, G. (2004). Fundamentals of medicinal chemistry. John Wiley & Sons. 

Yin, W. (2008). Market incentives and pharmaceutical innovation. Journal of Health Economics, 27(4), 
1060-1077. 

Yin, W., Basu, A., Zhang, J. X., Rabbani, A., Meltzer, D. O., & Alexander, G. C. (2008). The effect of the 
Medicare Part D prescription benefit on drug utilization and expenditures. Annals of Internal 
Medicine, 148(3), 169-177.  



Figures and Tables 
 

Figure 1: Distribution of number of prescribing physicians (NPP) in the licensing data. 
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Figure 2: Number of deals including the US territory, 1995-2014 

 
 
 



Figure 3: Number of deals not including the US territory, 1995-2014 

 
 
 
 
 
 

Figure 4: Intensity and coverage effects provoked by a downstream demand shock.!

 
 

 



Figure 5: Transaction costs and the cooperation response.!

 
Calibration assuming M and V uniform. 

 
 
 

 
 

Figure 6: Kernel distribution of MMS scores for conditions targeted by compounds in the deals 
data. (Each observation is a unique targeted condition.) 
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Figure 7: The cooperation response by NPP quartile. (Computed as percentage increases in total 
number of deals including the US: 2004-2010 vs 1995-2003)!
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Table 1: Descriptive statistics from the sample of licensing deals, 1995-2014. 
  US territory 
  Included Not included 
Number of unique in-licensing firms 913 2,428 
Number of deals 2,107 5,117 
Percentage of deals 29% 71% 
Mean number licensed indications 1.7 1.7 
  

 
  

Distribution across development stages* 
Discovery 36% 40% 
Clinical trials** 43% 32% 
   Launched 16% 22% 
Unreported 4% 6% 
Total 100% 100% 
*Refers to the highest stage of development achieved by the compound at 
licensing. **Includes deals for compounds undergoing regulatory review. 

 
  



Table 2: Probability of cooperation by highest achieved stage.*  

Highest achieved 
stage 

Quartile of NPP** 
Total 

1 2 3 4 

!!       

!! Panel A: All originator firms 
        
Phase I 0.23 0.25 0.29 0.3 0.26 
  947 988 806 418 3,159 
        
Phase II 0.29 0.3 0.36 0.46 0.36 
  1,007 922 1,124 1,071 4,124 
        
Phase III 0.41 0.45 0.44 0.57 0.47 
  471 284 388 536 1,679 
        
Launched 0.62 0.69 0.61 0.74 0.67 
  632 342 477 766 2,217 
        

  Panel B: Originator firms without market 
presence*** 

        
Phase I 0.29 0.3 0.33 0.34 0.31 
  638 684 570 309 2,201 
        
Phase II 0.33 0.33 0.41 0.52 0.4 
  720 720 817 798 3,055 
        
Phase III 0.47 0.48 0.51 0.62 0.53 
  307 205 266 387 1,165 
        
Launched 0.66 0.71 0.65 0.78 0.71 
  140 98 133 200 571 
*The number of compounds in each cell is presented below the probability 
of cooperation. **NPP does not include non-specialists. ***For phase I-III, 
firms without market presence are the ones without any launched compound. 
For launched compounds, these are the firms that have produced exactly one 
launched compound. 



Table 3: The value and probability of cooperation. Estimates from linear probability models. The 
dependent variable equals one if compounds are subject to a cooperation agreement and zero 

otherwise. 

  Panel A: NPP does not include non-specialists 
NPP 0.006** 0.018*** 0.017*** 0.014*** 
No Market Presence 0.156*** 0.157*** 0.181*** 0.048**  
Constant 0.126*** 0.152*** 0.261*** 0.582*** 
       
  Panel B: NPP includes non-specialists 
NPP 0.003*** 0.007*** 0.009*** 0.005*** 
No Market Presence 0.158*** 0.155*** 0.189*** 0.051**  
Constant 0.104*** 0.100*** 0.170*** 0.546*** 
       
Highest achieved 
stage Phase I Phase II Phase III Launched 

N 3159 4124 1679 2217 
Legend: *p<0.1, **p<0.05, ***p<0.01 

!
 
 
 

Table 4: Percentage of DMMS=1 compounds in the licensing data, by quartile of NPP. 

Quartile of NPP 
US territory included 

Total 
Yes No 

1 (lowest) 61% 55% 57% 

2 84% 84% 84% 

3 55% 53% 54% 

4 75% 68% 70% 
 
 
 
  



Table 5: Baseline demand, MMS and NPP.  

Proxy for downstream demand MMS NPP 
Total number of patients -0.09*** 0.04 
Total number of prescriptions 0.04 -0.07* 
Total expenditures on prescription drugs 0.05 -0.11** 
Legend: * p<0.1, ** p<0.05, *** p<0.01 

 

!
Table 6: Average number of deals by time period. 

  US included !! US not included 
  DMMS=0 DMMS=1   DMMS=0 DMMS=1 
  Average number of yearly deals* 
1995-2003 (PERIOD1) 27 59 

 
72 152 

2004-2010 (PERIOD2) 39 102 
 

88 199 
2011-2014 (PERIOD3) 26 61 

 
93 179 

  Percentage increases 
1995-2003 vs 2004-2010 44% 73%  22% 31% 
1995-2003 vs 2011-2014 -4% 3%   29% 18% 
*Rounded to the nearest integer 

 
 
 

Table 7: Estimates from Poisson count models. The dependent variable 
is the number of deals aggregated at the year/DMMS level. 

  (1) (2) 
     
DMMS 0.80*** 0.75*** 
DMMS*PERIOD2 0.15** 0.06 
DMMS*PERIOD3 0.06 -0.10*   

     

Sample 
Deals include the US 
Yes No 

Year F.E. Yes Yes 
N 40 40 
     
  Dependent variable 
Mean 53 128 
Std. dev. 28 56 
Robust standard errors. Legend: * p<0.1, ** p<0.05, *** p<0.01 



 
Table 8: Estimates from Poisson count models by NPP quartile. The dependent variable is the 

number of deals aggregated at the year/DMMS level. (Only deals including the US.) 
  (1) (2) (3) (4) 
       
DMMS 0.04 1.51*** 0.27** 1.18*** 
DMMS*PERIOD2 0.62*** 0.13 -0.18 -0.06 
DMMS*PERIOD3 0.48 0.33 0.03 -0.53**  
       

Sample Quartile of NPP 
1 2 3 4 

Year F.E.  Yes Yes Yes Yes 
       
N 40 40 40 40 
       
  Dependent variable 
Mean 14 17 8 13 
Std. dev. 8 14 3 9 
Robust standard errors. Legend: * p<0.1, ** p<0.05, *** p<0.01 

   !
 

Table 9: Short-term licensing response, by stage at licensing. (Deals including the US only.) 
  (1) (2)   (3) (4)   (5) (6) 
  Discovery  Clinical trials  Launched 
  DMMS=0 DMMS=1   DMMS=0 DMMS=1   DMMS=0 DMMS=1 

2003 1.0 1.0  1.0 1.0  1.0 1.0 
2004 0.7 1.3  1.2 1.9  1.3 1.3 
2005 1.6 1.1  0.9 2.0  1.0 1.4 
2006 1.3 1.7  0.9 2.3  1.0 1.1 
2007 1.6 1.6  1.6 2.4  1.0 0.7 
2008 1.9 1.5  0.8 2.3  1.2 1.3 
2009 1.1 0.9  1.2 2.2  1.0 0.7 
2010 0.8 1.5   1.0 2.0   0.8 1.0 

*For each DMMS/stage category, numbers represent the ratio of total licensing deals observed each 
year to that observed in 2003.  

 
 


