
Finding Mr. Schumpeter: An Empirical Study of
Competition and Technology Adoption∗

Jeffrey Macher†

Georgetown University
Nathan H. Miller‡

Georgetown University

Matthew Osborne§

University of Toronto

February 27, 2017

Abstract

We estimate the effect of competition on the adoption of a cost-reducing technology
in the cement industry, using data that span 1953-2013. The new technology, the
precalciner kiln, reduces fuel usage and hence fuel costs. We find adoption is more likely
if the fuel cost savings are large, and less likely if there are many nearby competitors.
We also find that competition damps the positive effect of cost savings. The results are
consistent with a dynamic theoretical model in which competition can deprive firms of
the scale necessary to recoup sunk adoption costs.

Keywords: technology, innovation, competition, portland cement
JEL classification: L1, L5, L6

∗We thank Philippe Aghion, Jacob Cosman, Alberto Galasso, Richard Gilbert, Arik Levinsohn, Devesh
Raval, John Rust, Rich Sweeney, Mihkel Tombak, Francis Vella, and seminar participants at Georgetown
University, Harvard Business School, Harvard University, and the University of Toronto for helpful comments.
We have benefited from conversations with Hendrick van Oss of the USGS and other industry participants.
Conor Ryan provided research assistance.
†Georgetown University, McDonough School of Business, 37th and O Streets NW, Washington DC 20057.

Email: jeffrey.macher@georgetown.edu.
‡Georgetown University, McDonough School of Business, 37th and O Streets NW, Washington DC 20057.

Email: nathan.miller@georgetown.edu.
§University of Toronto, Rotman School of Management, 105 St. George Street, Toronto, ON, Canada

M5S 3E6. Email: matthew.osborne@rotman.utoronto.ca.



1 Introduction

Joseph Schumpeter (1934, 1942) famously argues that large firms in concentrated markets

invest more intensely in innovation. Empirical research on this hypothesis is challenging

because innovation is difficult to measure and because the explanatory variables—market

concentration and firm size—are endogenous economic outcomes. Further, the substantial

reduced-form literature often relies on cross-industry comparisons that are difficult to inter-

pret because the theoretical mechanisms that dominate in one industry may be unimportant

in others.1 Interest in the subject remains strong, however, and recent research makes

progress by using dynamic structural models to simulate the effect of competition in specific

settings (e.g., Goettler and Gordon (2011); Igami (2015); Igami and Uetake (2016)).

We contribute to this literature with a study of technology adoption in the portland

cement industry. We first develop a dynamic model of technology adoption to understand

the economic mechanisms at play. We then estimate the determinants of adoption with-

out imposing (much) structure on the model, which allows us to reach conclusions about

technology adoption that rely on the underlying empirical variation to the greatest extent

possible. This approach is made possible by the data at our disposal, which span the period

1953-2013 and include hundreds of older kilns that could be replaced with fuel efficient pre-

calciner kilns. The first precalciner kiln is installed in 1974, and precalciner kilns account

for 74 percent of industry capacity by the end of the sample. Most older kilns that are not

replaced are shut down instead. The analysis makes use of time-series variation in fossil fuel

prices, as well as time-series and cross-sectional variation in competition and demand.

The theoretical objective of the paper is to understand adoption for a particular class

of cost-reducing technologies. This class includes technologies for which adoption is (i) non-

drastic because equilibrium prices remain above the marginal cost of old technology; (ii)

non-divisible because adoption costs do not scale with capacity; and (iii) non-exclusive be-

cause adoption by one firm does not preclude others from adopting. This technology class

is most common in process-intensive industries (e.g., Abernathy and Utterback (1978)), and

arguably captures the most salient characteristics of precalciner adoption. We analyze a

simplified version of the dynamic oligopoly models that are used in theoretical and compu-

tational research to understand investment, entry, and exit decisions under uncertainty (e.g.,

Ericson and Pakes (1995); Doraszelski and Satterthwaite (2010)). We show that competi-

1Aghion and Tirole (1994) refer to the Schumpeterian hypothesis as the second most tested relationship
in industrial organization, following only the price-concentration relationship. Even the literature reviews
are daunting (e.g., Kamien and Schwartz (1982); Baldwin and Scott (1987); Cohen and Levin (1989); Cohen
(1995); Gilbert (2006); Cohen (2010)).
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tion limits long run adoption at least weakly. The mechanism is simple: competition denies

firms the scale necessary to recoup adoption costs. The presence of many competitors does

create preemption incentives and, in some parameterizations, competition speeds short-term

adoption even as it limits long run adoption.

The empirical analysis centers on multinomial probit regressions that characterize kiln

adoption and shutdown. The regressions can be interpreted as implementing the first step

in the standard two-step estimator for dynamic games (e.g., Bajari, Benkard and Levin

(2007); Ryan (2012)). We focus exclusively on the first step because we seek to understand

firm policies rather than conduct counterfactual simulations. The institutional details of the

industry—market power is localized due to high transportation costs—allow us to measure

competition based on the number of nearby competing plants. The main challenge for iden-

tification is that this competition measure could be positively correlated with the unobserved

error term, such that estimation risks understating the extent to which competition deters

adoption. We proceed using the control function approach of Rivers and Vuong (1988).

The excluded instrument is a 20-year lag on the competition variable. This lag has power

because kilns are long-lived, and it is valid provided that autocorrelation in the unobserved

error terms is not too great. We find that using a 15-year lag instead produces similar results,

which supports that the persistence of the error term dies out over longer time horizons.

The regression results indicate that plants facing greater competition are less likely

to adopt precalciner technology and more likely to shutter their older kilns. These effects

are statistically significant and robust across a number of alternative modeling assumptions.

The mean elasticity of the adoption probability with respect to competition ranges between

−1.45 and −2.16 in the baseline specifications. Interpreted through the lens of the theoretical

model, the empirical analysis supports that Schumpeterian scale effects dominate preemption

effects in the data. Supplementary checks do not find evidence of strong preemption effects:

for example, whether a plant is nearby early adopters has little additional explanatory power

on precalciner adoption and kiln shutdown. The other comparative statics of the theoretical

model find robust support in the data: the regressions indicate that adoption increases

with the fuel costs savings provided by precalciners (which depend on fossil fuel prices), the

amount of nearby construction activity, and the average fuel costs of nearby competitors.

These results reinforce the connections between the model and the data.

Our research has bearing on whether carbon taxes induce firms to adopt green technol-

ogy. Recent empirical articles on the so-called “induced innovation” hypothesis typically find

some margin of adjustment but do not address competition (e.g., Newell, Jaffe and Stavins

(1999); Popp (2002); Linn (2008); Aghion et al (2012); Hanlon (2014)). Our theoretical
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model indicates that firms are more responsive to carbon taxes if competition is weaker.

While we do not observe carbon taxes in the data, fossil fuel prices vary considerably over

1973-2013 and can proxy for carbon taxes. Our regression results imply that monopolists are

nearly five times more likely than the average firm to install a precalciner kiln in response to

higher fuel costs.2 Thus, our theoretical and empirical results again are consistent. The pol-

icy insight is that innovation subsidies could be an important complement to market-based

regulation in competitive markets; a similar result is obtained from the endogenous growth

model of Acemoglu, Akcigit, Hanley and Kerr (2016).

Our research also is relevant to merger review. Allegations that mergers damp innova-

tion incentives appear with some frequency in the Complaints of the DOJ and FTC (Gilbert

(2006)). It is often difficult for outside economists to evaluate the merits of these allegations,

however, because the court documents typically do not elaborate on the theoretical mecha-

nism by which market structure affects innovation incentives. Our results suggest a specific

setting in which mergers could have pro-competitive effects on innovation by allowing firms

to achieve the scale required to profitably recoup the fixed costs of investment. Such mergers

enhance firms’ abilities to appropriate the returns to innovation; in this sense, our research

relates to the large literature on appropriability reviewed in Cohen (2010).

Our empirical results should extend to the specific class of technologies defined above

in markets that are at least reasonably competitive. External validity outside this class is

better evaluated based on the large theoretical literature on competition and innovation.

For example, while market power can facilitate innovation due to Schumpeterian effects

(e.g., Dasgupta and Stiglitz (1980)), the opposite result obtains if innovation cannibalizes

monopoly profit (Arrow (1962)), deters entry (Gilbert and Newbery (1982)), or allows firms

to escape competitive pressure (Aghion et al (2005)).3 Even within the class of non-drastic,

non-divisible, and non-exclusive technologies, our theoretical results indicate competition

can speed short-term adoption. The lack of support for preemption in the data may be due

to the large number of competitors that the average cement plant faces. This characteristic

distinguishes cement from the monopolies and oligopolies for which there is empirical support

for preemption (e.g., Genesove (1999); Vogt (2000); Dafny (2005); Schmidt-Dengler (2006);

Ellison and Ellison (2011); Gil, Houde and Takahashi (2015); Fang (2016)).

2Plants with many nearby competitors are more likely to shut down their older kilns in response to
higher fuel costs. This suggests a complicated industry adjustment process that we do not seek to model.
The dynamic game would incorporate a “war of attrition” as studied by Ghemaway and Nalebuff (1985),
Fudenberg and Tirole (1986), and Takahashi (2015).

3The literature on competition and innovation is incredibly deep. We refer readers to the complementary
literature reviews of Aghion and Griffith (2005) and Gilbert (2006).
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Our research builds on the substantial literature on technology adoption. The earli-

est contributions study competitive environments (e.g., Griliches (1957)) and thus do not

address the research questions examined here. Empirical support for the Schumpeterian pre-

diction that firm size encourages technology adoption has been found in a number of settings,

including various technologies in banking (Hannan and McDowell (1984); Akhavein, Frame

and White (2005); Fuentes, Hernandez-Murillo and Llobet (2010)); coal-fired steam-electric

generating technologies among electric utilities (Rose and Joskow (1990)); machine tools

in engineering (Karshenas and Stoneman (1993)); and MRIs in hospitals (Schmidt-Dengler

(2006)). The most notable counter-example is the basic oxygen furnace in the steel industry

(e.g., Oster (1982)). Our empirical results do not provide direct evidence regarding firm

size and technology adoption. However, indirect evidence is provided because the empiri-

cal results align tightly with the comparative statics of a theoretical model in which scale

determines whether firms can recoup adoption costs.

Finally, the portland cement industry is well-studied in the literature due in part to the

wealth of publicly available data. Most relevant is Fowlie, Reguant and Ryan (2016), which

estimates a dynamic structural model and simulates the effects of carbon taxes. The model

allows plants to make capacity and exit decisions, but does not incorporate cost-reducing

technology adoption. Stage-game payoffs are determined by Nash-Cournot competition. The

simulations indicate that carbon taxes induce exit and capacity reductions. Our empirical

results support that higher fuel prices increase the propensity for older kilns to shut down,

and show that technology adoption also is an important margin of adjustment. Chicu (2012)

estimates a dynamic structural model based on data from 1949-1969. Simulations on plants

in Arizona—a duopoly state—suggest that preemption spurs capacity investments.

The paper proceeds as follows. Section 2 develops the theoretical model. Section 3

provides institutional details on precalciner kilns and the portland cement industry. Section

4 details the econometric methodology and identification strategy. Section 5 defines the

variables used in the empirical analysis and provides summary statistics. Section 6 describes

the results of the regression analysis, and Section 7 concludes.

2 Theoretical Model

2.1 Framework, policies, and equilibrium

We develop and analyze a dynamic model of cost-reducing technology adoption, building on

the methodologies of Ericson and Pakes (1995) and Doraszelski and Satterthwaite (2010).
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Marginal costs equal c1 and c0 with and without the technology, respectively, with c1 < c0.

Adoption is irreversible. We consider markets with i = 1, . . . , N firms. The number of firms

is exogenously determined and serves to scale the degree of competition. It is possible to

endogenize N by incorporating entry and exit, but we present the simpler model because

the comparative statics are similar (though preemption matters somewhat more with exit).

In each period, each firm i that has not adopted the technology receives a private draw on

adoption costs, ki, which is drawn from a continuous distribution F (·) with support [k, k].4

These firms then decide whether to adopt. Lastly, all firms compete in a stage game that

determines static profit. There is a single state variable, Lt = 0, . . . , N − 1, that governs

adoption decisions: the number of competitors that already have adopted.

The equilibrium concept in the stage game is Nash-Cournot.5 Indexing the action of

“adopt” as x = 1 and the action of “not adopt” as x = 0, static profit is given by π(cx, Lt;N)

for x ∈ {0, 1}. Prices are determined according to a linear demand schedule, and we restrict

attention to areas of the parameter space in which equilibrium quantities are positive for

every firm. This setup conveys a number of desirable properties:

(i) Adoption is non-drastic: π(c0, Lt;N) > 0 for all Lt.

(ii) Adoption increases stage game profit: π(c1, Lt;N) > π(c0, Lt;N) for all Lt.

(iii) Adoption reduces the stage game profit of competitors: π(cx, Lt;N) > π(cx, Lt + 1;N)

for all Lt and x ∈ {0, 1}.

(iv) The increase in stage game profit due to adoption decreases with the number of

adopters: π(c1, Lt;N)− π(c0, Lt;N) > π(c1, Lt + 1;N)− π(c0, Lt + 1;N) for all Lt.

These properties create an incentive for preemption. Consider that if firm i adopts the

technology then the benefit of adoption is reduced for firm i’s competitors (property (iv)),

and this can increase the profit of firm i (property (iii)).

4The support of the adoption cost distribution can be bounded or unbounded, i.e., it can be the case that
k = −∞ or k =∞. A bounded distribution is theoretically attractive because if k ≥ 0 it rules out negative
adoption costs. The empirical model uses an unbounded support, in the context of Probit regressions, which
ensures that all observations can be rationalized.

5It follows that most direct antecedent to our theoretical model is Dasgupta and Stiglitz (1980), which
studies cost-reducing technologies in Nash-Cournot equilibrium. The models share the mechanism that
competition can deprive firms of the scale necessary to recoup adoption costs. The main difference is
that the Dasgupta and Stiglitz model is a static game in which firms choose their level of cost-reducing
investment, whereas our model considers a discrete cost reduction and incorporates dynamic elements such
as preemption and the option value of deferring adoption. Adding dynamics produces a richer relationship
between competition and technology adoption. Iskhakov, Rust and Schjerning (2015) study the dynamics
of cost-reducing technology in Nash-Bertrand equilibrium.
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We characterize firm behavior in a symmetric Markov-perfect equilibrium in pure

strategies. The following assumption is standard (e.g., Doraszelski and Satterthwaite (2010))

and helps ensure the existence of equilibrium:

Assumption A1: (i) The number of firms is finite, N < ∞. (ii) Stage game profits are

bounded, ie, |π| <∞ for c ∈ {c0, c1}, all values of Lt < N , all N <∞. (iii) The distribution

of adoption costs, F (·), has positive density over a connected support, and an expectation

that exists. (iv) Firms discount future payoffs, that is, δ ∈ [0, 1). (v) Profit functions are

symmetric, i.e., π(cx, Lt;N) is the same for all firms i.

Denote the value function heading into period t (i.e., before the cost draws are received)

without adoption as V0(Lt;N) and with adoption as V1(Lt;N). Once the cost draws are

received, each firm adopts the technology if and only if v1(Lt;N, k) > v0(Lt;N), where vx(·)
denotes the expected discounted profit for action x ∈ {0, 1}. Evaluating this inequality

requires that each firm integrate out over the actions of its competitors because the cost

draws are privately observed. Given symmetry, the adoption probability of any single firm

can be written as P (Lt;N). Let the probabilities with which the state space transitions from

Lt to Lt+1 = 0, 1, . . . , N−1 be collected in the vector P 0(Lt;N). The first Lt−1 elements of

this vector equal zero because adoption is irreversible.6 It is helpful to write the profit and

value functions in vector form. Let π(cx, N) = (π(cx, 0;N), π(cx, 1;N), · · · , π(cx, N−1;N))′

and V x(N) = (Vx(0;N), Vx(1;N), · · · , Vx(N − 1;N))′.

With this notation in hand, the expected discounted profit for each action has the

expression:

Adopt: v1(Lt;N, k) = P 0(Lt;N)′ (π(c1, N) + δV 1(N))− k, (1)

Not Adopt: v0(Lt;N) = P 0(Lt;N)′ (π(c0, N) + δV 0(N))

The optimal policy takes the form of a cutoff rule: firm i adopts if k < k∗(Lt;N), where

k∗(Lt;N) is the value of k such that v0(Lt;N) = v1(Lt;N, k). In turn, this implies that the

adoption probabilities are P (Lt;N) = F (k∗(Lt;N)).

The value function associated with adoption, V1(Lt;N), has an explicit solution because

6If Lt = 0 and N = 2 then P 0(0; 2) = (1− P (0; 2), P (0; 2)). If instead Lt = 1 then P 0(1; 2) = (0, 1).
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adoption is irreversible. Define the upper triangular matrix Π0 as follows:

Π0 =


P 0(0;N)′

P 0(1;N)′

...

P 0(N − 1;N)

 . (2)

This (N × N) matrix fully characterizes the state-space transition probabilities for any

firm that does not adopt the technology. Once a firm adopts, however, it changes the

adoption probabilities of its competitors in subsequent periods. Let the (N × N) matrix

Π1 characterize the post-adoption transitions of competitors.7 Then the value functions

associated with adoption are given by the vector:

V 1(N) = Π0

(
I + δ(I − δΠ1)−1

)
π(c1, N). (3)

The value function associated with not adopting is given by the following equation:

V0(Lt;N) =

∫ k

k

max{v0(Lt;N), v1(Lt;N, k)}dF (k). (4)

Assumption A2: Define an industry state transition matrix, Π̃, that characterizes the

probabilistic changes in the total number of firms that have adopted the technology, L̃t. The

industry state transition matrix is continuous in each firm’s adoption strategy, and the in-

dustry state L̃t.

Under A1 and A2, Propositions 2 and 5 of Doraszelski and Satterthwaite (2010) guar-

antees the existence of a symmetric pure strategy Nash equilibrium. This result helps mo-

tivate our empirical model, which assumes that firms take identical actions given identical

observables and unobservables. The dynamic game is simpler than that of Doraszelski and

Satterthwaite because investment is discrete and exit is prohibited. These changes do not

materially affect the proofs; it is possible to apply standard dynamic programming methods

and Brouwer’s fixed point theorem following the same arguments.8

7The matrix Π1 is composed of stacked vectors of post-adoption transition probabilities P 1(Lt;N).
Because an adoption changes all subsequent adoption probabilities, P 1(Lt;N) is different than P 0(Lt;N)
For example, if N = 2 then P 1(0;N) = (1− P (1), P (1)), but P 1(1;N) = (0, 1).

8The key component is the assumption of continuous private shocks, which implies that a firm adopts
if it receives a draw below k < k∗(Lt;N). Without this, the existence of an equilibrium is not guaranteed
without admitting mixed strategies. The issue that can arise is similar to that of Ericson and Pakes (1995)
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2.2 Preemption and the benefits of adoption

In this section, we derive the value to a firm of adopting the new technology, in order to

understand the different forces that drive that decision. Define the benefit of adoption as

b(Lt;N, k) = v1(Lt;N, k) − v0(Lt;N). Stacking across states yields the vector b(N, k) =

(b(0;N, k), b(1;N, k), . . . , b(N − 1;N, k))′. Based on the value functions shown in equation

(3) and (4), it is possible to construct a set of intermediary matrices such that:

b(N, k) = Π0(π1 − π0)− k︸ ︷︷ ︸
Term 1

+ δΠ0A(Π0,Π1)π1︸ ︷︷ ︸
Term 2

− δΠ0B(Π0)π0︸ ︷︷ ︸
Term 3

(5)

− δΠ0B(Π0)D[Π0(π1 − π0)− κ+ δΠ0A(Π0,Π1)π1]︸ ︷︷ ︸
Term 4

The vector κ gives the expected adoption costs; the Lth element of that vector equals E(k|k <
k∗(L−1)). The matrixD summarizes adoption probabilities; it is diagonal and has F (k∗(L))

as the (L + 1)st diagonal element. The matrices A(Π0,Π1) and B(Π0) serve to discount

future profit streams and are provided in Appendix B.1.

The first term in equation (5) is the expected increase in static profit due to adoption

that would be realized in the subsequent stage-game, less the observed adoption cost. The

second term is the expected discounted stream of future profit associated with adoption.

It incorporates the post-adoption transition matrix Π1, which captures how competitors

respond to adoption. This is how preemption affects decisions: adoption reduces the proba-

bility that competitors adopt, and thereby increases the profit flows that arise with adoption.

The third term is the expected discounted stream of future profit associated with not adopt-

ing. It incorporates only the explicit profit, i.e., the profit earned before the firm adopts in

some future period. The fourth term captures the option value of waiting to adopt: if a firm

does not adopt today, it might find it appropriate to do so in the future.

Figure 1 considers two simple numerical examples to illustrate the role of preemption.

The left column shows the optimal policy functions and the right column shows the expected

time path of adoption. The top and bottow rows correspond to the two different param-

eterizations. Each panel features results from the full model (“with preemption”) and an

alternative model that eliminates the preemption incentive (“without preemption”). The

latter model is solved by substituting Π0 for Π1 in the value functions, so that firms do not

consider that adoption changes the subsequent adoption probabilities of competitors.

in the context of entry or exit, because adoption also is a discrete action. Allowing for private shocks means
that an individual firm essentially treats its rivals as mixing over upgrading and not upgrading.
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Figure 1: The Role of Preemption
Notes: Each row summarizes the model under a different parameterization. The left panels provide the
equilibrium policy functions as a function of the state space (Lt). The right panels show expected time paths
in terms of the fraction of the industry that has adopted (Lt/N). The horizontal black dashed lines in the
left panels show k, the lower bound of adoption costs. Appendix Table C.1 provides the parameterizations.

In the top row, preemption shifts the equilibrium cutoff rule such that firms adopt for

higher values of k, unless no other competitors would adopt the technology, in which case the

models are identical. The industry adopts the technology faster with preemption—though

the difference is quite small—but converges to the same long run equilibrium. This pattern

holds qualitatively over the many parameterizations that we have investigated. Preemption

has larger effects in the bottom row. Not every firm adopts in the long run equilibrium and

this induces something of a “race” to adopt. The cutoff level of k for the first adopter (i.e.,

with Lt = 0) is higher with preemption and this leads to noticeable faster adoption.9

There is at least one special case of the model in which preemption plays little role. If

9There is no second adopter in the parameterization with preemption if the state Lt = 1 is realized
because k∗(1;N) < k. However, if two firms adopt simultaneously at state Lt = 0 then the industry moves
direcly to the Lt = 2 state and a third firm adopts.
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adoption probabilities are small then the benefits of adoption can be approximated as:

b(N) ≈ 1

1− δ
(π1 − π0)− k, (6)

Both the preemption and option value terms in equation (5) become small because future

adoption is unlikely, and the equilibrium cutoff rule simplifies to a comparison of stage game

profit with and without adoption. This special case helps motivate the next subsection,

in which we explore the comparative statics of the Nash-Cournot model and develop that

firm scale is a fundamental determinant of technology adoption. It also has bearing on the

empirical exercise because the unconditional probability of precalciner adoption is less than

two percent in a given year.

2.3 Comparative statics and firm size

In this section we focus on the adoption decision of a firm in a situation in which its competi-

tors are unlikely to adopt. We model this decision using a “focal firm” setting, which means

that the focal firm does not integrate out the upgrade probabilities of its rivals. Letting

the inverse demand curve be given by P (Q) = a − Q where Q =
∑N

j=1 qj, the equilibrium

markups and quantities of the focal firm facing the adoption decision are given by:

q∗(cx, L;N) = P ∗x (L;N)− cx =
a− cx +N(c− cx)

(N + 1)
(7)

where again x ∈ {0, 1} denotes the action of the focal firm, and c captures the average

cost of all firms (i.e., c = 1
N

[Lc1 + (N − L − 1)c0 + cx]). The profit of the focal firm is

π(cx, L;N) = (q∗(cx, L;N))2 due to the equality of equilibrium markups and quantities.10

Following equation (6), with low adoption probabilities the benefit of adoption can be

approximated as:

b(L;N) ≈ 1

1− δ
(
π(c1, L;N)− π(c0, L;N)

)
− k

=
1

1− δ
2N

(N + 1)
q∗(ĉ, L;N)∆c− k (8)

We refer to the second line as the “static benefit” of adoption because it does not incorporate

10We refer readers to Shapiro (1989) for a more general discussion of the Nash-Cournot model, including
conditions for the existence and uniqueness of equilibrium with nonlinear demand. We employ a unit slope
normalization. This is without loss of generality and all results are robust to demand curve rotations.
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preemption or the option value. It can be derived in a few lines of algebra starting with

equilibrium markups and quantities, and includes both the magnitude of the cost savings

(∆c = c0 − c1) and the midpoint cost level (ĉ = 1
2
(c0 + c1)). The following comparative

statics are then straight-forward:

Result 1: The static benefit of adoption (i) increases in the cost savings, ∆c; (ii) decreases

in the initial cost level, c0; (iii) increases with industry average costs, c; and (iv) increases

with the inverse demand intercept, a. Further, profit decreases with costs and the number of

firms, but increases with the industry average costs and the inverse demand intercept.

The effect of competitors (i.e., N) on the static benefit is difficult to sign with a

tractable expression because adding a competitor j with costs cj ∈ {c0, c1} changes industry

average costs. Consider instead the effect of competitors that have marginal costs cj = c.

(Such competitors do not exist in the full model, but this approach nonetheless conveys

useful intuition.) An additional competitor decreases the benefit that the focal firm receives

from adoption if the following condition holds:(
c− ĉ
ĉ

)
<

(
a− ĉ
ĉ

)[
(N + 1)3 −N(N + 2)2

N2(N + 2)2 − (N + 1)4

]
(9)

We sketch the derivation in Appendix B. The term in brackets equals 0.29 if N = 2 and

converges to 0.50 as N grows large. The condition holds trivially if L > N/2 because then

the LHS is negative and is exceeded by the RHS (which is positive). In earlier stages of

industry adoption, the condition holds provided that the cost reduction of the technology is

not too great relative to the total surplus created by the industry, which seems plausible in

many settings.11 This leads to a second set of comparative statics:

Result 2: Under condition (9), increasing the number of competitors (i) decreases the static

benefit of adoption; and (ii) decreases the (positive) effect of ∆c on the static benefit.

We pause here to consider that the cost savings of the technology increase the static

benefit of adoption, but that this effect diminishes with the number of firms. This is relevant

for the induced innovation hypothesis because it suggests that competition can mitigate the

11The condition almost surely holds in our empirical application. Because precalciner technology reduces
fuel costs by about 30 percent, the maximum value the LHS could take in our application is around (1 −
0.85)/0.85 = 0.176. The empirical results of Ganapati, Shapiro and Walker (2016) can be manipulated to
obtain (p − c)/c = 1.50 for the cement industry. This provides a lower bound to (a − ĉ)/ĉ. The Ganapati,
Shapiro and Walker results use data from the Census of Manufacturers. See Table 2 of the May 2016 draft,
which indicates prices of 0.05 and costs of 0.02 (in thousands of 1987 dollars per cubic yard).
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Figure 2: Induced Innovation in the Theoretical Model
Notes: The vertical axis is the adoption probability given Lt = 0 (i.e., F (k∗(0;N))). The horizontal axis is
∆c, the magnitude of the cost savings. The different lines show the relationship for N = 1, . . . , 5. Appendix
Table C.1 provides the parameterization.

responsiveness of firms to some innovation stimulus. One policy-relevant example is carbon

taxes, which affect adoption incentives by growing the cost difference between “green” and

“dirty” technologies. Figure 2 shows that the comparative static holds in the fully dynamic

version of the model, in which we do not restrict firms to believe its rivals do not upgrade. The

vertical axis is the probability of adoption given Lt = 0. The horizontal axis show different

levels of ∆c. The relationship between adoption and ∆c is provided for N = 1, . . . , 5.

Adoption probabilities increase for larger ∆c, consistent with part (i) of Result 1, but the

increase is less pronounced with large N , consistent with part (ii) of Result 2.

To develop the mechanisms underlying the comparative statics, we reconsider the static

adoption benefits of equation (8) using a first order Taylor Series expansion:

π(c1, L;N)− π(c0, L;N) ≈ − ∂π(c, L;N)

∂c

∣∣∣∣
c=ĉ

∆c (10)

where again ∆c = c0 − c1 and ĉ = 1
2
(c0 + c1). This expansion holds with equality if demand

is linear but only differentiability is necessary for a more general analysis. An application of
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the envelope theorem yields the derivative of the profit function:

−∂π(c, Lt;N)

∂c
= q∗i (ĉ, L;N)︸ ︷︷ ︸

Scale Effect

− q∗i (ĉ, L;N)
∑
k 6=i

∂P ∗

∂qk

∂qk
∂qi

∂q∗i
∂c︸ ︷︷ ︸

Strategic Effect

(11)

where we use i to index the focal firm. The scale effect captures the standard intuition that

reductions in marginal cost are more profitable if scaled over many units of output (Arrow

(1962)). The magnitude of the scale effect decreases with the number of competitors, and

this creates Schumpeterian dynamics in the full model: competition can deny firms the scale

necessary to recoup adoption costs. By contrast, equilibrium output increases with demand

and industry average costs, and this allows firms to more easily recoup adoption costs. The

strategic effect captures that adoption induces competitors to produce less. Its magnitude

can increase with the number of competitors. With linear demand, the strategic effect

simplifies to
(
N−1
N+1

)
q∗(ĉ, L;N), and condition (9) determines the net effect of competition on

the profit derivative.

2.4 Competition and adoption in the dynamic game

Figure 3 provides graphical intuition about the relationship between competition and tech-

nology adoption in the fully dynamic model which allows for preemption. The rows cor-

responds to different parameterizations. The left column provides the equilibrium policy

functions as a function of the state space (Lt). The horizontal black dashed lines show k,

the lower bound of the adoption costs. The right column shows the expected time path of

L̃t/N , the fraction of the industry that adopts.

The graph of the policy function in the top row exhibits several notable features. First,

every firm adopts eventually because the equilibrium cutoff levels exceed the lower bound

of the adoption costs (i.e., k∗(Lt) > k for all Lt and N). Second, the policy functions slope

down, for a given N , which indicates that adoption is more likely if fewer competitors have

already adopted. This result happens because with large Lt preemption incentives are weaker

and the stage game benefits are smaller. Third, adding competitors to the model shifts the

policy functions down so that adoption is less likely at any level of Lt. The graph of the time

path shows how these features play out. Adoption happens faster if there are fewer firms,

but regardless an absorbing state is eventually reached in which all firms adopt.

The second row differs because the equilibrium cutoff levels do not always exceed the

lower bound of the adoption cost distribution. Specifically, only three firms adopt if N = 4

13



Figure 3: Competition and Technology Adoption
Notes: Each row summarizes the model under a different parameterization. The left column provides the
equilibrium policy functions as a function of the state space (Lt). The right column shows expected time
paths in terms of the fraction of the industry that has adopted (L̃t/N). The solid red, dotted green, and
dashed blue lines correspond to N = 3, N = 4, and N = 5, respectively. The horizontal black dashed lines
that appear in the left column show k, the lower bound of the adoption cost distribution. Appendix Table
C.1 provides the parameterizations.

or N = 5. The expected time paths show that competition both slows adoption and reduces

adoption in the absorbing state. The long run effect of competition arises because having

many competitors denies some firms the scale necessary to recoup adoption costs; preemption

does not matter for the last adopter, so it does not affect long run adoption.

Figure 3 supports a conjecture that competition limits long run adoption at least

weakly. Indeed, the conjecture holds for a special class of absorbing states in which revers-

ing the adoption of a single firm would generate further adoption at a cost draw of k.12

Because time is discrete, adoption can overshoot this class of absorbing states if multiple

firms receive advantageous (private) cost draws. This is unlikely, however, because adoption

12Formally, states in the special class are characterized by a number of adopters L̃∗ such that the (L̃∗ +
1, L̃∗ + 1) element of the industry transition matrix Π̃ equals one, and the (L̃∗, L̃∗ + 1) element of Π̃ is
positive but less than one.
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Figure 4: Technology Adoption in the Absorbing States

probabilities tend to be small near the absorbing state. The proposition below characterizes

how the number of adopters in the class of absorbing states, L∗, changes with the number

of competitors.

Proposition 1: If k ≤ 0 then L∗ = N . If instead k > 0 there exists some n1 such that if

N > n1 then L∗ < N and L∗ weakly decreases in N . Further, if k > 0 and (1− δ)k > (∆c)2

then there exists some n2 > n1 such that if N > n2 then L∗ = 0.

The proof of the proposition is in Appendix B. We show that it is possible to charac-

terize adoption in the special class of absorbing states analytically for any N , which extends

inference beyond the limits of numerical solution. To reinforce intuition, Figure 4 plots the

number and fraction of adopters under one specific parameterization. For N ≤ 4, the num-

ber of adopters grows with the number of firms because all firms find it profitable to adopt.

The number of adopters shrinks for N > 4, and equals zero for N ≥ 11. The fraction of firms

that adopt begins at one, and then falls to zero over N ∈ [4, 11]. Competition eventually

becomes sufficient to deny at least one firm the scale necessary to recoup adoption costs,

and thereafter long run adoption decreases in the number of competitors.

The role of competition is more complicated in the early periods because preemption

becomes relatively more important. Figure 5 summarizes results from another parameter-

ization to make this point. As shown, competition can speed the pace of adoption in the

short-term even as it limits adoption in the absorbing states. This is due to the preemption

incentives, which can be particularly strong if not all firms eventually adopt. It also is readily

transparent that an inverted-U operates in the initial state (Lt = 0) because adoption is more
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Figure 5: Competition and Technology Adoption
Notes: The left panel provides the equilibrium policy functions as a function of the state space (Lt). The
right panel shows expected time paths in terms of the fraction of the industry that has adopted (L̃t/N). The
solid red, dotted green, and dashed blue lines correspond to N = 3, N = 4, and N = 5, respectively. The
horizontal black dashed lines in the left panel show k, the lower bound of adoption costs. Appendix Table
C.1 provides the parameterization.

likely with N = 4 than with N = 3 or N = 5. Indeed, it is a simple corollary to Proposition

1 that an inverted-U exists whenever k∗(Lt;N2) > k∗(Lt;N1) for N2 > N1, because there

is always an N3 > N2 such that k∗(Lt;N2) > k∗(Lt;N3). The inverted-U appears only in

the early periods, however, because Proposition 1 dictates a monotonic negative relationship

between competition and adoption in the absorbing states.

3 Empirical Setting

3.1 The portland cement industry

We examine the adoption of precalciner technology in the portland cement industry over

1973-2013. Portland cement is a finely ground dust that forms concrete when mixed with

water and coarse aggregates such as sand and stone. Concrete, in turn, is an essential

input to many construction and transportation projects. The production of cement involves

feeding limestone and other raw materials into rotary kilns that reach peak temperatures of

1400-1450◦ Celsius. Fuel costs account for a sizable portion of overall revenues.

Plants equipped with precalciner technology preheat the raw materials using the ex-
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haust gases of the kiln combined with heat from a supplementary combustion chamber,

which reduces production energy requirements by 25-35 percent by allowing an important

chemical reaction (calcination) to begin before raw materials enter the kiln. This reduces the

requisite kiln length and requires a complete plant retrofit. Cement producers outsource kiln

design to one of several industrial architecture firms with expertise in cement. The physical

component is not especially demanding—many industrial construction firms can manage the

steel plates, refractory linings, and duct work—but total design and installation costs are

large. To provide an order of magnitude, publicly-available estimates place the total cost of

building a modern cement plant around $800 million.13

Table 1 tracks precalciner kiln adoption over time. In 1973, nearly all plants used inef-

ficient wet and long dry kilns. A small number of plants utilized preheater technology, which

recycles exhaust gases without a supplementary combustion chamber, but no plant used

precalciner technology. Over the ensuing four decades, the number of wet kilns decreased

from 249 to 19 and the number of long dry kilns decreased from 157 to 26. Shuttered kilns

typically remain on site because they are costly to relocate, but most of the supporting equip-

ment can be repurposed profitably. By the final year of data 2013, there are 66 precalciner

kilns in operation and these account for 74 percent of industry capacity.

Table 2 provides the average fuel costs among kilns in each technology class, again at

five-year intervals over the sample period. These costs are obtained based on kiln efficiency

and the price/mBtu of the primary fossil fuel used. The changes within kiln technology

classes over time are driven primarily by exogenous fluctuations in natural gas and coal

prices, which provides a key source of variation that we exploit in the estimation. This

feature of the data can be interpreted further as providing a natural experiment as to how

firms would respond to carbon taxes, which change the price of fossil fuels.

Table 2 also provides the fuel costs of the “frontier technology,” which we define as

a precalciner kiln that burns the most affordable fuel. The difference between a kiln’s fuel

cost and that of the frontier technology – a measure of the fuel cost savings available from

precalciner adoption – is an empirical analog to the ∆c term in the motivating theory. Fuel

cost savings tend to be large when fossil fuel prices (and thus fuel costs) are high.14 The

13CEMBUREAU, the European cement association, places construction costs for a one million metric
tonne plant at around three years of revenue, and estimates annual total costs of around $200 million.
A study by The Carbon War Room (2011), an environmental action group, places profit margins at 33
percent given a per-tonne price of $100. Putting these facts together, our $800 million number is calculated
as $200 × 1.33 × 3 = $798 ≈ $800. For the CEMBUREAU estimate, see http://www.cembureau.be/

about-cement/cement-industry-main-characteristics
14There is a well known analogy in the automobile industry: the driving cost of vehicles with low miles-

per-gallon (MPG) is more sensitive to the gasoline price than that of high MPG vehicles, and automobile
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Table 1: The Portland Cement Industry over 1973-2013

Wet Long Dry Dry with Dry with Total Total Total
Year Kilns Kilns Preheater Precalciner Kilns Plants Capacity

1973 249 157 23 0 429 159 76.67
1978 201 111 42 2 356 151 79.85
1983 121 90 36 24 271 132 79.79
1988 96 70 35 26 227 116 75.47
1993 72 65 38 27 202 107 74.50
1998 67 63 34 31 195 106 76.79
2003 53 49 38 45 185 106 90.88
2008 45 31 32 56 164 103 96.00
2013 19 26 29 66 140 95 98.45
Notes: The table shows data at five-year snapshots spanning 1973-2013. Kiln counts are provided sepa-
rately for each of the four production technologies: wet kiln, long dry kilns, dry kilns with preheaters, and
dry kilns with precalciners. Total capacity is in millions of metric tonnes. The data are for the contiguous
U.S. and are obtained from the PCA Plant Information Survey.

final column of the table provides the national average price of portland cement: depending

on the year and kiln technology, fuel costs account for between 8 and 33 percent of revenues.

Two recent papers estimate that pass-through of fuel costs to price in the cement industry

exceeds unity (Miller, Osborne and Sheu (2015); Ganapati, Shapiro and Walker (2016)).

Cement is typically transported by truck to ready-mix concrete plants and large con-

struction sites, and these associated costs generally account for a sizable portion of pur-

chasers’ total expenditures. The academic literature often models the industry as a number

of distinct local markets (e.g., Ryan (2012); Fowlie, Reguant and Ryan (2016)). Figure 6

provides a map of the cement plants in operation as of 2010. Some geographic areas (e.g.,

southern California) have many plants, while others areas (e.g., South Dakota) have only a

single nearby plant. These differences provide useful cross-sectional variation.

As cement is used in construction projects, demand is highly procyclical. Figure

7 graphs total production and consumption in the United States over 1973-2013. When

macroeconomic conditions are favorable, consumption tends to outstrip production due to

domestic capacity constraints; imports make up the differential. The technology by which

cement can be shipped via transoceanic freighter at low cost and imported was developed in

the late 1970s, which explains the tight connection between consumption and production in

the earliest years of the sample. U.S. cement exports are negligible. Finally, cement cannot

be stored for any meaningful period of time, because the product gradually absorbs moisture

prices adjust accordingly (e.g., Busse, Knittel and Zettelmeyer (2013); Langer and Miller (2013)).
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Table 2: Fuel Costs per Metric Tonne of Cement

Wet Long Dry Dry with Dry with Frontier Average
Year Kilns Kilns Preheater Precalciner Technology Price

1973 18.99 16.41 13.30 · 10.33 85.59
1978 36.42 31.13 24.56 23.35 22.41 110.25
1983 28.84 23.63 18.06 16.78 16.78 94.41
1988 19.81 15.91 13.28 12.41 11.75 79.78
1993 15.35 12.66 9.86 9.77 9.44 77.97
1998 13.50 11.24 8.75 8.39 8.39 98.13
2003 12.94 11.26 8.76 8.40 8.40 87.53
2008 22.81 19.85 15.45 14.81 14.81 105.55
2013 25.70 22.36 17.40 16.83 16.68 89.93

Notes: The table provides average fuel costs by kiln technology, the hypothetical fuel costs of a kiln
with “frontier technology” defined as a precalciner kiln that burns the most affordable fuel, and the
national average price of portland cement. Data are shown at five-year snapshots spanning 1973-2013.
Fuel costs are based on authors’ calculations as detailed in Appendix A. Prices are obtained from the
USGS Minerals Yearbook. All statistics are in real 2010 dollars per metric tonne of cement output.

in the air which eventually renders it unusable.

3.2 Data sources

We draw on several data sources to construct a panel of kiln-year observations that span the

contiguous United States over 1973-2013. This sample period is determined by the Portland

Cement Association’s (PCA) Plant Information Survey (PIS), which is published annually

over 1973-2003, semi-annually over 2004-2010, and then again in 2013. The PIS provides

an end-of-year snapshot of the industry that includes the location, owner, and primary fuel

of each cement plant in the U.S. and Canada, as well as the age, capacity and technology

class of each kiln. We impute values in missing years by using data from preceding and

following years, as well as by using information in the Minerals Yearbook of the United

States Geological Survey (USGS), which summarizes an annual cement plant census. We

combine the PIS kiln data with supplementary data that contain kiln locations over 1949-

1973. These data were constructed by backcasting the 1973 PIS using information culled

from the trade publication Pit and Quarry, occasionally printed Pit and Quarry maps of the

industry, and the American Cement Directory. We refer readers to Chicu (2012) for details.15

The supplementary dataset is useful because it allows us to construct lagged competition

15We thank Mark Chicu for making these data available.
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Figure 6: Portland Cement Plants in the Contiguous United States, in 2010

measures without discarding the earlier years of the PIS sample.

We calculate the fuel costs of production based on kiln efficiency and fossil fuel prices,

using the PCA’s U.S. and Canadian Portland Cement Labor-Energy Input Survey to measure

production energy requirements. This survey is published intermittently, and we use the

1974-1979, 1990, 2000, and 2010 versions. We obtain the average prices of coal, natural

gas, and distillate fuel oil for the industrial sector from the State Energy Database System

(SEDS) of the Energy Information Agency (EIA). We use fossil fuel prices at the national

level because they are more predictive of cement prices (Miller, Osborne and Sheu (2015)),

probably due to the measurement error associated with imputing withheld state-level data.

We obtain retail gasoline prices from the EIA’s Monthly Energy Review.16 We use county-

level data on construction employment and building permits from the Census Bureau to

account for demand-side fluctuations.17 Construction employment is part of the County

Business Patterns data. We use NAICS Code 23 and (for earlier years) SIC Code 15. The

data for 1986-2010 are available online.18 The data for 1973-1985 are obtained from the

16The gasoline prices include federal and sales taxes, and are for regular leaded gasoline un-
til 1990 and regular unleaded gasoline thereafter. See http://energy.gov/eere/vehicles/

fact-915-march-7-2016-average-historical-annual-gasoline-pump-price-1929-2015, last ac-
cessed April 25, 2016.

17For both the construction employment and building permits, it is necessary to impute a small number
of missing values. We calculate the average percentage difference between the observed data of each county
and the corresponding state data, and use that together with the state data to fill in the missing values.

18See http://www.census.gov/econ/cbp/download/, last accessed April 16, 2014.
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University of Michigan Data Warehouse. The building permits data are maintained online

by the U.S. Department of Housing and Urban Development.19 Finally, data on cement

prices, consumption, and production reported in the previous subsection are obtained from

the USGS Minerals Yearbook. USGS does not provide firm-level or plant-level data.

4 Empirical Model

4.1 Policy functions

Our empirical objective is to characterize the policy functions that govern technology adop-

tion and kiln shutdown. We use multinomial probit regressions to implement the first step

from the standard two-step estimator for dynamic games developed in Bajari, Benkard and

Levin (2007) and applied in research such as Ryan (2012). The second step, which uses

forward simulation to recover dynamic structural parameters, is unnecessary because we do

not conduct counterfactual simulations.

To formalize our approach, consider that profit in the stage game of the theoretical

model depends on cost, industry average cost, demand, and the number of firms. Let the

empirical analog be π(cxit, cit, Nit, ait, wit; θ), where the subscripts i and t identify the kiln

and year, respectively. The first four arguments are defined as in the theoretical model (for

19See http://socds.huduser.org/permits/, last accessed April 16, 2014.
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x = {0, 1}), wit is a vector of controls, and θ is a vector of parameters. Define the empirical

“benefit of adoption” for a producer with an old kiln as:

b(∆cit, c
0
it, cit, Nit, ait, wit; θ) = π(c1

it, cit, Nit, ait, wit; θ)− π(c0
it, cit, Nit, ait, wit; θ)− kit

With this notation in hand, the technology choice of producers can be framed as a maxi-

mization problem in which the maximand is:

Πit =


b(∆cit, c

0
it, cit, Nit, ait, wit; θ) + uAit if adopt

u0
it if maintain

−π(c0
it, cit, Nit, ait, wit; θ) + uSit if shut down

(12)

where (uAit, u
0
it, u

S
it) are the stochastic shocks. We parameterize the functions using linear ap-

proximations. The parameters that we estimate thus do not have a structural interpretation

and instead summarize how the function arguments affect firm policies. To be explicit, we

substitute into the maximization problem using the following approximations:

b(·) ≈ βA
1 ∆cit + βA

2 Nit + βA
3 ait + βA

4 cit + βA
5 c

0
it + w′itα

A + φA
t (13)

−π(c0
it, ·) ≈ βS

1 c
0
it + βS

2 Nit + βS
3 ait + βS

4 cit + w′itα
S + φS

t (14)

We specify φA
t and φS

t alternately using linear time trends, a flexible polynomial in time,

and year fixed effects, which accounts for learning-by-doing and other time-related changes.

Most empirical applications of Bajari, Benkard and Levin (2007) use higher-order approxi-

mations when estimating policy functions because this helps recover the underlying dynamic

structural parameters in the second step. The simpler parameterization is more appropriate

here given our empirical objective of understanding the determinants of firm policies.

4.2 Estimation

There is a potentially confounding correlation between the number of firms and the stochastic

shocks, which summarize the net effect of unobserved demand and cost factors. To address

the issue, we employ the two stage conditional maximum likelihood estimator developed by

Rivers and Vuong (1988). The estimator requires a reduced-form equation that governs the

evolution of the endogenous variable. We assume that Nit evolves according to:

Nit = zitγ1 + ∆citγ2 + aitγ3 + citγ4 + c0
itγ5 + w′itγ6 + φN

t + vit (15)
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where zit is an instrument that is excluded from the producers’ maximization problem,

φN
t is specified the same way as φA

t and φS
t , and vit is a reduced-form error term. For

notational convenience, we collect the exogenous variables in the vector Xit. We assume that

(Xit, u
A
it, u

S
it, vit) is i.i.d. Further, let (uAit, u

S
it, vit) have a mean-zero joint normal distribution,

conditional on Xit, with the finite positive definite covariance matrix:

Ω ≡

 σA
uu σAS

uu σA
vu

σAS
uu σS

uu σS
vu

σA
vu σS

vu σvv

 (16)

Endogeneity is present if the reduced-form error term is correlated with the stochastic

shocks (specifically, if σA
vu 6= 0 or σS

vu 6= 0). Using the joint normality assumption, the

stochastic shocks can be rewritten as ukit = vitλ
k + ηkit for k ∈ {A, S}, where λk = σk

vu/σvv

and ηkit = ukit − vitλk. If a suitable control function is used as a proxy for the reduced-form

error, vit, then the measure of competition is orthogonal to the remaining error terms (Rivers

and Vuong (1988)). Estimation proceeds in two stages:

1. OLS estimation of Nit on the exogenous regressors. This obtains an estimate of the

reduced-form error term that we denote v̂it.

2. Maximum likelihood estimation of the multinomial probit equations using v̂it as a

control function. Differences between vit and v̂it are normally distributed and thus

compatible with the distributional assumptions of the multinomial probit model.

The second-stage standard errors can be adjusted to account for the presence of the esti-

mation of the control function using a multi-step procedure based on the minimum distance

estimator of Amemiya (1978) and Newey (1987). This adjustment has virtually no effect in

our application, however, so we report simpler standard errors that are clustered at the kiln

level to correct for autocorrelation.

4.3 Identification and instrument

The theoretical model indicates that technology adoption is more likely under favorable

profit conditions, and greater profit generally supports more competitors. It follows that any

correlation between uAit and vit is likely positive, and this allows the bias to be signed: the

basic probit estimator is likely to understate the extent that competition deters technology
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adoption. Similar logic applies to kiln shutdown, although our regression results indicate

that bias in that equation is empirically less important.

Finding an instrument to correct endogeneity bias is not straightforward. Our set-

ting differs from more standard industrial organization applications that involve demand or

supply estimation, and for which cost or demand shocks respectively are valid instruments.

Because both demand and cost enter the profit function, neither provides the requisite ex-

ogenous variation. We proceed instead under an identifying assumption that competitive

conditions exhibit greater autocorrelation than the unobserved profit shocks:

lim
T→∞

Cov(uAit, u
A
i,t−T )

Cov(Nit, Ni,t−T )
= 0 (17)

That Nit exhibits a high degree of persistence is clear from the data: a regression of Nit on

Ni,t−1 and all of the exogenous variables of equation (13) yields a coefficient on the lag of

0.70 (p-value of 0.000). This persistence is due to the longevity of kilns, which are on average

40 years old upon retirement. The degree of persistence in the unobserved profit shock is

impossible to evaluate independently, but the frequent changes in observed cost and demand

conditions (e.g., see Table 2 and Figure 7) provide some support for this assumption.

Under equation (17), if a lagged version of the competition measure is used as an

instrument then bias converges to zero with the length of the lag. We use a lag of 20 years,

which exploits the decades of pre-adoption data collected in Chicu (2012). The instrument

has power and generates F -statistics between 2,700 and 3,800 in our baseline regressions.

Some bias remains if Cov(uAit, u
A
i,t−20) 6= 0. This possibility motivates robustness checks in

which we use alternative instruments based on respective lags of 15, 10, and 5 years. The

results support that the persistence of the error term dies out over longer time horizons.

Other sources of endogeneity seem unlikely. Exogeneity of the demand controls is likely

to be reasonable. Technology decisions within a market are not likely to drive demand,

because cement represents a small fraction of total construction costs. Endogeneity in fossil

fuel prices could arise if increases in fuel demand from cement plants led to price increases

in the fuel market. However, any such feedback should be small because cement accounts

for a fraction of the fossil fuels used in the United States. Consistent with this argument,

bituminous coal prices do not exhibit the same pro-cyclical variation as cement demand.

Industry costs (i.e., cit) incorporate previous technology decisions and thus could be related

to the unobserved profit shocks. However, we obtain similar results if we instrument for

industry costs using a 20-year lag on the count of nearby precalciners, and the main results

also are robust to the exclusion of industry costs as an independent variable.
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5 Variables and summary statistics

5.1 Variables

We calculate the fuel costs of each kiln based on its energy requirements and the price of

the primary fuel:

Fuel Costjt = Primary Fuel Pricejt × Energy Requirementsjt

where the fuel price is in dollars per mBtu and the energy requirements are in mBtu per

metric tonne of clinker. We obtain the energy requirements from the PCA labor-energy

input surveys. Details on this calculation are provided in Appendix A. The cost savings

that would be realized by adopting precalciner technology are the difference between the fuel

costs of the kiln and those of the technology frontier, which we define based on the energy

requirements of a precalciner kiln using the most affordable fuel. This difference provides

the empirical proxy for the ∆c term that appears in the theoretical model.

We measure competition based on plant locations and gasoline prices. We first define a

distance metric as the multiplicative product of miles and a gasoline price index that equals

one in the year 2000. We then calculate the number of competing plants within a distance

radius of 400 to obtain an empirical proxy for Nit. This radius is motivated by prior findings

that 80-90 percent of portland cement is trucked less than 200 miles (Census Bureau (1977);

Miller and Osborne (2014)), so that plants separated by a distance of more than 400 are

unlikely to compete for customers.20 We exclude plants owned by the same firm from the

competition measure, though few such plants exist within the specified radius. We also use

the distance radius to calculate the industry costs for each plant (i.e., cit), defined as the

average costs of all other plants with the radius. The competition and industry cost variables

use the location of plants as of the prior year.

Figure 8 provides separate decadal histograms for the count of nearby competitors.

Cross-sectional variation is due to plant location dispersion, while inter-temporal variation

arises due to gasoline price fluctuations, plant closures, and (infrequent) plant entry. We use

instruments based on the locations of plants 20 years prior to the observation in question.

20Our treatment of distance reflects the predominant role of trucking in cement distribution. A fraction
of cement is shipped to terminals by train (6 percent in 2010) or barge (11 percent in 2010), and only then
is trucked to customers. Some plants may therefore be closer than our metric indicates if, for example,
both are located on the same river system. Straight-line miles are highly correlated with both driving miles
and driving time and, consistent with this, previously published empirical results on the industry are not
sensitive to which of these measures is employed (e.g., Miller and Osborne (2014)).
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Figure 8: Count of Competitors within a Distance of 400 by Decade

Because gasoline prices are plausibly exogenous, we use the same distance radii to calculate

the competition and lagged competition measures. To illustrate, consider a kiln observation

in the year 2000, when the gasoline index equals one: instruments are constructed based

on the plants in 1980 within 400 miles of the kiln’s location, even though the 1980 gasoline

index differs from one. We calculate the instrument in this manner even for kilns that are

not present in the data 20 years prior.

Finally, we control for kiln age, kiln capacity, and demand conditions. The two kiln-

level controls are straight-forward and obtained from the PIS kiln data. The demand-level

control uses county-level data on building permits and construction employment, which ex-

plains nearly 90 percent of the variation in USGS-reported state-level consumption. To

obtain a single regressor, we first create a county-specific demand variable as a linear combi-

nation of building permits and construction employment. The specific formula, which we es-

timate based on the state-level regressions, is DEMAND = 0.0154×PER+0.0122×EMP ,

where PER and EMP are building permits and construction employment, respectively. We

then sum the demand among counties within the distance radii from each kiln. As a ro-

bustness test, we also constructed variables that capture the distance between plants and

the nearest customs district through which foreign imports enter: these controls have little

explanatory power, however, and we thus omit them from the specifications shown below.
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Table 3: Number of Observations per Kiln

Order Statistics: Observations
Count Mean Obs. 10% 25% 50% 75% 90%

All Kilns 460 17.81 2 6 12 34 41
Replaced Kilns 144 15.39 2 5 8 28 34
Shut Down Kilns 244 12.82 2 4 10 16 36
Surviving Kilns 72 37.57 37 41 41 41 41

Notes: The table provides the count of unique non-precalciner kilns in the 1973-2013 data, both
together and separately for (i) kilns replaced with a precalciner kiln, (ii) kilns closed without
replacement, and (iii) kilns in operation as the end of sample period. The table also summarizes
the distribution of (annual) observations per kiln.

5.2 Summary statistics

Table 3 describes the sample composition. The data include observations on 460 distinct

non-precalciner kilns: 144 are replaced with precalciner technology, 244 are closed without

replacement, and 72 survive to the end of the sample. A kiln that is replaced or shut down

exits the sample but continues to affect the Competition variable for the kilns that remain

in the sample. The median kiln is observed for 12 years. At the median, kilns that are

replaced with precalciner technology are observed for eight years, kilns that are shut down

are observed for ten years, and kilns that survive to the end of the sample are observed for

41 years. There is some variation in the number of observations for surviving kilns due to

(infrequent) greenfield entry. There are 8,192 kiln-year observations in the total sample.

Table 4 provides summary statistics for the dependent variables (indicators for adoption

and shutdown) and the explanatory variables. Precalciner adoption and kiln shutdown are

rare events: indicator means imply an empirical probability of 1.8 percent and 3.0 percent,

respectively. The bivariate correlation coefficients show that there are limits to what can be

identified given the available empirical variation. Three restrictions on equations (13) and

(14) facilitate estimation:

1. We impose that βA
5 = 0 because the effects of fuel costs and cost savings in the upgrade

equation are not separately identifiable, due to the high degree of correlation between

the two variables (ρ = 0.89). Our analysis is thus focused on the effect of cost savings,

which the theoretical model suggests is more important.

2. We impose that βS
4 = 0 because fuel costs and industry costs are highly correlated

(ρ = 0.86). We identify only the net effect on the shut down decision.
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Table 4: Summary Statistics

Correlation Coefficients
Variable Mean St. Dev (1) (2) (3) (4) (5) (6) (7) (8)

(1) Adoption 0.018 0.13

(2) Shutdown 0.030 0.17 -0.02

(3) Fuel Cost c0it 22.15 9.63 0.07 0.06

(4) Cost Savings ∆cit 7.78 6.62 0.08 0.05 0.89

(5) Industry Costs cit 21.68 8.58 0.03 0.06 0.86 0.62

(6) Competitors Nit 20.56 12.34 -0.00 -0.00 0.03 0.13 0.10

(7) Construction ait 12.85 8.85 0.00 -0.04 -0.37 -0.20 -0.38 0.71

(8) Kiln Age w1,it 30.87 16.12 0.08 0.09 -0.17 -0.09 -0.27 -0.13 0.02

(9) Kiln Capacity w2,it 0.26 0.18 -0.05 -0.10 -0.20 -0.20 -0.20 -0.01 0.13 -0.39

Notes: The table provides means, standard deviations, and correlation coefficients for the dependent variables (indicators
for adoption and shutdown) and the regressors. The regression sample is comprised of 8,192 kiln-year observations over the
period 1973-2013. Capacity is in millions of metric tonnes per year.

3. We impose βA
4 = 0 in some regressions. If flexible time controls are included (e.g.,

high-order polynomials or year fixed effects) then the remaining empirical variation is

insufficient to identify the effects of industry costs on the upgrade decision.

With these restrictions in hand, there is ample empirical variation to identify the remaining

parameters. One way to assess whether collinearity could be problematic is to calculate the

variance inflation factors (VIFs) of the regressors. This is done by regressing each regressor k

on the other regressors, and calculating V IF (k) = 1
1−R2 . A rule of thumb is that collinearity

is a threat to asymptotic consistency if the VIF exceeds ten (Mela and Kopalle (2002)). In

the regressions below, none of the regressors has a VIF that exceeds four.

6 Results

6.1 Baseline regression results

Table 5 presents the baseline probit results. Panel A addresses the likelihood of precalciner

adoption and Panel B addresses the likelihood of kiln shutdown. Both are relative to the

alternative of maintaining the older kiln. The columns account for changes over time in

different ways: column (i) relies exclusively on the regressors; column (ii) adds a linear time
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trend (t = 0, 1, . . . , 40); column (iii) uses a fifth order polynomial in time; and column (iv)

incorporates year fixed effects. The results in column (iv) are generated with two binomial

probit regressions due to convergence problems with the multinomial probit.

The results in Panel A show that the likelihood of adoption decreases with the number

of nearby competitors. The effect is statistically significant in each regression. To evaluate

magnitudes, we calculate that the mean elasticity of the adoption probability with respect

to the competition ranges from −1.41 to −2.39. Thus, interpreted through the lens of the

theoretical model, the results indicate that Schumpeterian effects dominate preemption in

the data. It is possible that preemption incentives are weak because adoption probabilities

are small, or because there are enough plants that the action of any single plant is immaterial

for the others. The other parameter estimates are entirely consistent with the comparative

statics of the theoretical model: adoption increases with cost savings, construction activity,

and industry average costs. The first stage residual has a positive and statistically significant

on adoption, which supports our interpretation of the unobserved error term. The mean

elasticity with respect to cost savings ranges from 0.58 to 0.71, and the mean elasticity with

respect to nearby construction activity ranges from 1.13 to 1.89.

Turning to Panel B, the likelihood of kiln shutdown increases in fuel costs and the

number of nearby competitors, and decreases with construction activity. Comparing across

columns, the precision of the coefficients diminishes with the more flexible controls for time

effects. In column (ii), where coefficients remain significant, the mean elasticity of the

shutdown probability with respect to fuel costs is 0.41, the mean elasticity with respect to

competitors is 0.74, and the mean elasticity with respect to construction activity is −0.81.

We suspect that the relatively weaker statistical significance with shutdown arises because

shutdown decisions are subject to a greater number of unobservable forces outside of the

model. One example would be the exhaustion of an adjacent limestone quarry, which would

make continued kiln operations uneconomical. Lastly, the first stage residual does not affect

shutdown, so the impact of bias appears to be unimportant empirically.

Among the control variables, kiln age is positively associated both with adoption and

shutdown, consistent with common intuition. By contrast, kiln capacity tends to have a

negative effect on adoption, though this is statistically significant only if controls for time

effects are omitted. At first blush, this result may seem inconsistent with the Schumpeterian

hypothesis. However, the regressor does not provide a suitable test because it captures a

decision made decades earlier (on average), and because the capacity of the plant changes

with precalciner installation. Capacity does correlate negatively with kiln shutdown.
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Table 5: Baseline Probit Regression Results

Panel A: Adopt vs. Maintain
Regressor (i) (ii) (iii) (iv)

Fuel Costs, Competition, and Demand

Cost Savings ∆cit 0.051*** 0.045*** 0.040*** 0.032***
(0.007) (0.007) (0.007) (0.006)

Competitors Nit -0.055*** -0.058*** -0.037*** -0.026***
(0.010) (0.011) (0.009) (0.008)

Construction ait 0.070*** 0.078*** 0.049*** 0.036***
(0.012) (0.010) (0.011) (0.010)

Industry Costs cit 0.027*** 0.029***
(0.010) (0.010)

Control Variables

Kiln Age w1,it 0.018*** 0.021*** 0.019*** 0.014***
(0.003) (0.004) (0.004) (0.003)

Kiln Capacity w2,it -0.805** -0.675 -0.719 -0.418
(0.392) (0.445) (0.447) (0.341)

First Stage Residual v̂it 0.075*** 0.065*** 0.083*** 0.050***
(0.014) (0.017) (0.019) (0.014)

Mean Elasticities of Pr(Adoption)

WRT Cost Savings 0.71 0.63 0.58 0.70
WRT Competitors -2.25 -2.39 -1.57 -1.41
WRT Construction 1.79 1.89 1.28 1.13

Specification Details

Time Polynomial no 1st Order 5th Order no
Year Fixed Effects no no no yes

Notes: The table summarizes results obtained from multinomial probit regressions in
columns (i)-(iii) and a binomial probit regressions in column (iv). The sample is com-
prised of 8,192 kiln-year observations over 1973-2013. The dependent variable in Panel A
is an indicator that equals one if the kiln is replaced with precalciner technology. The de-
pendent variable in Panel B is an indicator that equals one if the kiln is shut down without
replacement. The excluded instrument in the first stage is a 20-year lag on the number of
nearby competitors. The elasticities are calculated for each observation and summarized
with the mean. Standard errors are shown in parentheses. Statistical significance at the
10%, 5%, and 1% levels are denoted with *, **, and ***, respectively.
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Table 5: Baseline Probit Regression Results (continued)

Panel B: Shut Down vs. Maintain
Regressor (i) (ii) (iii) (iv)

Fuel Costs, Competition, and Demand

Fuel Costs c0it 0.011** 0.011** 0.005 -0.002
(0.005) (0.005) (0.007) (0.006)

Competitors Nit 0.017** 0.017*** 0.021*** 0.012*
(0.007) (0.008) (0.008) (0.006)

Construction ait -0.031*** -0.030*** -0.029*** -0.014
(0.011) (0.011) (0.011) (0.009)

Control Variables

Kiln Age w1,it 0.016*** 0.016*** 0.017*** 0.012***
(0.003) (0.003) (0.003) (0.002)

Kiln Capacity ws,it -1.906*** -1.786*** -1.919*** -1.543***
(0.415) (0.457) (0.472) (0.361)

First Stage Residual v̂it -0.012 -0.014 -0.014 -0.003
(0.011) (0.012) (0.013) (0.010)

Mean Elasticities of Pr(Shut Down)

WRT Fuel Costs 0.42 0.41 0.18 0.13
WRT Competitors 0.74 0.72 0.87 0.60
WRT Construction -0.83 -0.81 -0.79 -0.44

Specification Details

Time Polynomial no 1st Order 5th Order no
Year Fixed Effects no no no yes

Notes: The table summarizes results obtained from multinomial probit regressions in
columns (i)-(iii) and a binomial probit regressions in column (iv). The sample is com-
prised of 8,192 kiln-year observations over 1973-2013. The dependent variable in Panel A
is an indicator that equals one if the kiln is replaced with precalciner technology. The de-
pendent variable in Panel B is an indicator that equals one if the kiln is shut down without
replacement. The excluded instrument in the first stage is a 20-year lag on the number of
nearby competitors. The elasticities are calculated for each observation and summarized
with the mean. Standard errors are shown in parentheses. Statistical significance at the
10%, 5%, and 1% levels are denoted with *, **, and ***, respectively.
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6.2 Induced innovation

The positive effect of cost savings in the adoption equation provides support for the propo-

sition that carbon taxes would have induced faster adoption of precalciner technology. The

theoretical model suggests that this effect should be particularly true for firms without many

competitors. We test this prediction by incorporating interactions. Table 6 summarizes the

results for the adoption decision. The interaction of cost savings and competitors is negative

and statistically significant in columns (i)-(iii), consistent with the theory. The mean elastic-

ities are similar in magnitude to those of the baseline specifications. The coefficients in the

shutdown equation take the expected signs (Appendix Table C.2). They are not statistically

significant independently, though some joint significance exists.

Figure 9 plots how a one standard deviation increases in cost savings and fuel costs

affect adoption and shutdown, respectively. Panel A shows that greater cost savings increase

the probability of adoption only if competition is not too great. The magnitude of the effect

for a monopolist is nearly five percentage points: a large percentage given the unconditional

probability of adoption is just 1.8 percent. The magnitude of the effect for a firm facing

30 nearby competitors (roughly the 90th percentile) is much smaller. Panel B indicates

that shutdown in response to greater fuel costs tends to happen for kilns with many nearby

competitors. The magnitudes are large relative to the unconditional shutdown probability

of 3.0 percent. Considered together, the analysis indicates that increases in fossil fuel prices

are associated with both more adoption and more exit, and that the amount of competition

determines which effect dominates.

6.3 Preemption

The baseline results indicate that plants with more nearby competitors are less likely to adopt

precalciner technology. For completeness, we provide three additional empirical checks for

preemption in this section. First, if preemption is important then logic suggests that the

presence of nearby precalciners should discourage adoption and/or encourage shutdown. We

therefore add the number of precalciner competitors within a radius of 400 to the baseline

specifications. Two first stages are required because the number of precalciner competitors is

endogenous. We use 20-year lags on the number of competitors and the number of precalciner

competitors as excluded instruments (both of which have considerable power). Table 7

provides the results for adoption in column (i) and shutdown in column (iv). The number

of competitors retains its negative effect on precalciner adoption and its positive effect on

shutdown. The coefficients on precalciner competitors take the expected signs but are quite
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Table 6: Probit Regression Results with Interaction

Adopt vs. Maintain
(i) (ii) (iii) (iv)

Fuel Cost Savings, Competition, and Demand

Cost Savings 0.066*** 0.069*** 0.066*** 0.046***
(0.016) (0.017) (0.014) (0.011)

Competitors -0.040*** -0.039*** -0.014 -0.013
(0.012) (0.014) (0.013) (0.011)

Cost Savings -0.0011* -0.0015** -0.0017** -0.0009
×Competitors (0.0006) (0.0007) (0.0007) (0.0005)

Construction 0.063*** 0.066*** 0.038*** 0.031***
(0.012) (0.013) (0.012) (0.010)

Industry Costs 0.027*** 0.030***
(0.009) (0.010)

Derived Statistics: Mean Elasticities of Pr(Adoption)

WRT Cost Savings 0.59 0.54 0.47 0.55
WRT Competitors -1.98 -2.03 -1.11 -1.18
WRT Construction 1.61 1.67 0.98 0.99

Specification Details

Control Variables yes yes yes yes
Time Polynomial no 1st Order 5th Order no
Year Fixed Effects no no no yes

Notes: The table summarizes results obtained from multinomial probit regressions
in columns (i)-(iii) and a binomial probit regression in column (iv). The sample is
composed of 8,192 kiln-year observations over 1973-2013. The dependent variable
is an indicator that equals one if the kiln is replaced with precalciner technology.
The excluded instrument in the first stage is a 20-year lag on the number of nearby
competitors. The control variables include kiln age, kiln capacity, the first stage
residual, and the first stage residual interacted with cost savings. The elasticities
of the estimated adoption probability with respect to Cost Savings, Competitors,
and Construction are calculated for each observation and summarized with the
mean. Standard errors are shown in parentheses. Statistical significance at the
10%, 5%, and 1% levels are denoted with *, **, and ***, respectively.
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Figure 9: Changes in the Probabilities of Adoption and Shutdown
Notes: Panel A plots changes in precalciner adoption probabilities due to a one standard deviation increase
in cost savings (which is 6.62). Panel B plots changes in kiln shutdown probabilities due to a one standard
deviation increase in fuel costs (which is 9.63). Both effects are evaluated over the number of nearby
competitors. Results are based on specification (ii) in Table 6. Other explanatory variables are held at their
respective means. The shaded regions provide 95% confidence intervals.

imprecisely estimated. Thus, the regression does not provide compelling empirical support

for the hypothesis that early adoption preempts competitors or encourages shutdown.

Second, the theoretical model indicates that if preemption incentives are strong enough

then an inverted-U relationship between competition and adoption arises in the early periods

of industry adoption. If the inverted-U is present, however, it is a short-term phenomenon

because the theoretical model is unambiguous that competition weakly decreases long run

adoption. We test for an inverted-U relationship by allowing the benefits of adoption to have

a quadratic relationship with the competition measure. In estimation, we also incorporate

a quadratic in the estimated first-stage residual. The results are provided in columns (ii)

and (v). The quadratic term is positive in the adoption equation, exactly the opposite of

what would be arise with an inverted-U relationship. We emphasize that the net effect of

the competition regressors is negative in the range of the data, so the results should not be

misinterpreted as implying that a sufficiently high degree of competition increases adoption.

A third approach to testing for preemption is to see whether adoption is most likely for

moderate levels of demand (e.g., Dafny (2005) Ellison and Ellison (2011)). The logic is that

competitors definitely would not adopt with low enough demand and definitely would adopt

with high enough demand, which isolates intermediate ranges of demand as candidates for
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Table 7: Additional Checks for Preemption

Adopt vs. Maintain Shut Down vs. Maintain
(i) (ii) (iii) (iv) (v) (v)

Cost Savings 0.041*** 0.041*** 0.041***
(0.007) (0.007) (0.007)

Fuel Costs 0.004 0.005 0.005
(0.007) (0.007) (0.007)

Competitors -0.039*** -0.073*** -0.035*** 0.021** 0.029** 0.011
(0.011) (0.014) (0.010) (0.009) (0.013) 0.008

Precalciner Competitors -0.012 0.014
(0.059) (0.060)

Competitors2 0.0007*** -0.0002
(0.0002) (0.0002)

Construction 0.052*** 0.046*** 0.035 -0.029*** 0.028** 0.051**
(0.013) (0.011) (0.024) (0.012) (0.011) (0.024)

Construction2 0.0003 -0.002***
(0.0005) (0.001)

Notes: Results are from multinomial probit regressions. The data include 8,192 kiln-year observations over 1973-2013.
The dependent variable in the left columns is an indicator that equals one if the kiln is replaced with precalciner
technology, and the dependent variable in the right columns is an indicator that equals one if the kiln is shut down
without being replaced. All regressions incorporate control variables and a fifth order polynomial in time. The control
variables are kiln age, kiln capacity, and the first stage residual(s). In columns (i) and (iv), there are two first stage
regressions, for the number of competitors and the number of precalciner competitors, respectively. The excluded
instruments are 20-year lags on the competition variables. In the other columns there is a single first stage regression
and the excluded instrument is a 20-year lag on competition. Standard errors are shown in parentheses. Statistical
significance at the 10%, 5%, and 1% levels are denoted with *, **, and ***, respectively.
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supporting preemption. We implement by adding a quadratic term in Construction. The

results are shown in columns (iii) and (vi). The coefficient on the quadratic term is positive

in the adoption equation. This result does not support preemption, but the standard error

is large enough that the opposite relationship cannot be ruled out.

6.4 Robustness analysis

The results developed above are robust to alternative choices related to the distribution of

the structural error terms, variable definitions, and the relevant sample period. Regressions

that use the binomial probit, binomial logit, and multinomial logit models return basically

identical results. The linear probability model also returns similar effects in terms of both

magnitude and statistical significance. We also have used a “competing risks” semipara-

metric hazard rate model (Fine and Gray (1999)), in which shutdown is incorporated as an

exogenous event rather than as an endogenous decision driven by particular economic circum-

stances. Results are consistent with the binomial probit. The estimates appear to be driven

by the empirical variation in the data rather than particular distributional assumptions.

Table 8 evaluates robustness with respect to variable definitions and sample periods.

We use binomial probit regressions to estimate the adoption equation. Column (i) adds two

alternative cost savings measures, based on fossil fuel prices five years ahead and behind

the year of the observation. These alternative measures do not predict adoption. Column

(ii) modifies the number of competitors based on a tighter distance radius of 200. This

alternative competition measure does not affect the results much. Column (iii) uses both

the baseline radius (400) and the alternative radius (200), and both variables are found

negative and statistically significant. The total effect of a competitor within a radius of 200

is −0.015 − 0.041 = −0.056. Closer competitors matter more, which is consistent with the

role of transportation costs. Columns (iv) and (v) use subsamples that respectively span

1973-1990 and 1991-2013. The results do not differ substantially.

Table 9 explores the IV strategy. Again we use binomial probit regressions to estimate

the adoption equation. Column (i) excludes the first stage residual. The number of nearby

competitors still has a negative effect but the magnitude is reduced. The direction of this

change is consistent with expectations given the source of bias. Columns (ii)-(iv) respectively

use 5-year, 10-year, and 15-year lags on competition as the excluded instrument, instead of

the 20-year lags used in the baseline specifications. The magnitude of the estimated effect of

nearby competitors is greater if a longer lag is used as an instrument. The mean elasticity of

adoption with respect to competition is −1.37 with the 15-year lag, which is not statistically
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Table 8: Probit Regressions with Alternative Regressors and Samples

(i) (ii) (iii) (iv) (v)

Cost Savings 0.038*** 0.015** 0.032*** 0.030*** 0.040**
(0.008) (0.006) (0.005) (0.005) (0.017)

Cost Savings (t+ 5) -0.008
(0.005)

Cost Savings (t− 5) 0.000
(0.010)

Competitors (d < 400) -0.027*** -0.015** -0.028** -0.030**
(0.008) (0.007) (0.012) (0.015)

Competitors (d < 200) -0.071*** -0.041***
(0.014) (0.013)

Construction 0.030*** 0.085*** 0.042*** 0.041** 0.032**
(0.011) (0.017) (0.009) (0.018) (0.013)

Notes: Results are from binomial probit regressions. The dependent variable is an indicator that
equals one if the kiln is replaced with precalciner technology. The data in columns (i)-(iii) include
8,192 kiln-year observations over 1973-2013. The data in column (iv) include 5,149 kiln-year
observations over 1973-1990, and the data in column (v) include 3,043 kiln-year observations
over 1991-2010. All regressions incorporate control variables and a fifth order polynomial in
time. The control variables are kiln age, kiln capacity, and the first stage residual. The excluded
instrument in the first stage is a 20-year lag on the number of nearby competitors. Standard
errors are shown in parentheses. Statistical significance at the 10%, 5%, and 1% levels are
denoted with *, **, and ***, respectively.
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Table 9: Probit Regression Results with Alternative IVs

(i) (ii) (iii) (iv)

Cost Savings 0.027*** 0.028*** 0.028*** 0.029***
(0.005) (0.005) (0.005) (0.004)

Competitors -0.013*** -0.017*** -0.021*** -0.025***
(0.005) (0.006) (0.006) (0.006)

Construction 0.024*** 0.029*** 0.032*** 0.034***
(0.007) (0.008) (0.008) (0.008)

Residual 0.063*** 0.059*** 0.053***
(0.025) (0.018) (0.014)

IV Lag Structure No IV 5 Year 10 Year 15 Year

Derived Statistics: Mean Elasticities of Pr(Adoption)

WRT Cost Savings 0.52 0.54 0.55 0.56
WRT Competitors -0.69 -0.92 -1.15 -1.37
WRT Construction 0.80 0.98 1.07 1.16

Notes: Results are from binomial probit regressions. The dependent variable is an
indicator that equals one if the kiln is replaced with precalciner technology. The
data include 8,192 kiln-year observations over 1973-2013. All regressions incorpo-
rate control variables and a fifth order polynomial in time. The control variables
are kiln age, kiln capacity, and the first stage residual. The excluded instrument
in the first stage is a lag on the number of nearby competitors, as described within
the columns. The elasticities of the estimated adoption probability with respect
to Cost Savings, Competitors, and Construction are calculated for each observa-
tion and summarized with the mean. Standard errors are shown in parentheses.
Statistical significance at the 10%, 5%, and 1% levels are denoted with *, **, and
***, respectively.

different from the −1.57 mean elasticity obtained with the comparable baseline specification.

Thus, while the results suggest even longer lags might be required to fully eliminate bias,

the effects of persistence in the error term appear to mostly die out within 15-20 years.

7 Conclusion

Our research explores precalciner adoption in the portland cement industry. The precalciner

kiln reasonably can be characterized as belonging to a broad class of non-drastic, non-

exclusive, and non-divisible cost-reducing technologies. A theoretical analysis of this setting

shows that adoption incentives exhibit a Schumpeterian flair: competition can deprive firms

of the scale necessary to recoup fixed adoption costs. The empirical analysis of firm policy

functions comports with comparative statics of the theoretical model and indicates that

plants with fewer nearby competitions are more likely to adopt precalciner technology.
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The fundamental argument of Schumpeter (1942) is that market power in capitalist

economies creates conditions under which “the perennial gale of creative destruction” facil-

itates innovation and growth. Thus, it may seem ironic that support for the Schumpeterian

hypothesis is found in the staid industry of portland cement, which has used broadly similar

production technologies for more than a century. On the other hand, three generations of

Schumpeter’s ancestors ran a successful textiles company, at one point installing the first

steam engine in Triesch in modern-day Czech Republic; at least one biographer speculates

this family history contributed to Schumpeter’s interests in entrepreneurship and innovation

McCraw (2007, p. 11). Furthermore, it is precisely the stability of the portland cement indus-

try that makes it amenable to careful empirical analysis. In this sense, our research is similar

to other studies that have found support for Schumpeterian hypotheses in the diffusion of

process innovations (e.g., Hannan and McDowell (1984); Rose and Joskow (1990); Karshenas

and Stoneman (1993); Akhavein, Frame and White (2005); Schmidt-Dengler (2006)).

We conclude with a brief discussion of possible extensions. Our current research focuses

on how and why competition affects firm policies regarding technology adoption. We have

not (yet) examined welfare effects. It also is possible to incorporate entry and exit into the

model. Our early efforts on this front indicate that preemption effects become somewhat

stronger with exit, but that otherwise the comparative statics are unchanged. We have opted

to present the simpler model here. The main advantage to the richer model is that it is more

suitable for structural analyses of industry adjustment paths. Such an undertaking would

require simplifying restrictions on the state space, but if these can be made without too

much loss of realism then useful results could be obtained on a number of subjects, including

the welfare consequences of market-based regulation.
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Appendices

A Measuring Fuel Costs

We calculate the energy requirements of production based on the labor-energy input surveys

of the PCA. There is no discernible change in the requirements over 1990-2010, conditional

on the kiln type. We calculate the average mBtu per metric tonne of clinker required in

1990, 2000, and 2010, and apply these averages over 1990-2013. These are 3.94, 4.11, 5.28,

and 6.07 mBtu per metric tonne of clinker for precalciner kilns, preheater kilns, long dry

kilns, and wet kilns, respectively. A recent USGS survey accords with our calculations (Van

Oss (2005)). Technological improvements are evident over 1973-1990 within kiln type: in

1974, the energy requirements were 6.50 mBtu per metric tonne of clinker at dry kilns (a

blended average across dry kiln types) and 7.93 mBtu per metric tonne of clinker at wet

kilns. We assume that improvements are realized linearly over 1973-1990. We scale down by

our calculated energy requirements by five percent to reflect that a small amount of gypsum

is ground together with the kiln output (i.e., clinker) to form cement.

Plants sometimes list multiple primary fuels in the PIS. In those instances, we calculate

fuel costs with the coal price if coal is among the primary fuels; otherwise, we use natural

gas prices if natural gas is among the multiple fuels. We use oil prices only if oil is the only

fossil fuel listed. In the 1980s, petroleum coke supplements or replaces coal at many kilns.

The price of coal and petroleum coke are highly correlated, and we simply use the coal price

for those observations. Figure A.1 plots fossil fuel prices and usage over the sample period.

In the mid-1970s, coal and natural gas wer the most popular fuel choices, while only a small

subset of plants used oil. Coal quickly came to dominate the industry due to a change in

relative prices, and fuel costs thereafter track the coal price.

Our methodology does not incorporate secondary fuels, the most popular of which are

waste fuels such as solvents and used tires. The labor-energy input surveys of the PCA

indicate that waste fuels account for around 25% of the energy used in wet kilns and 5% of

the energy used in dry kilns. We do not have data on the prices of waste fuels but understand

them to be lower on a per-mBtu basis than those of fossil fuels. Accordingly, we construct

an alternative fuel cost measure in which we scale down the fossil fuel requirements of wet

and dry kilns in accordance with the survey data. Whether this adjustment better reflects

the fuel costs of marginal output depends in part on (i) the relative prices of waste and fossil

fuels and (ii) whether the average fuel mix reported in the survey data reflect the marginal

fuel mix. On the latter point, if marginal clinker output is fired with fossil fuels then our
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Figure A.1: Fossil Fuel Prices and Usage 1973-2013

baseline measurement should reflect marginal fuel costs more closely than the alternative

measurement. Regardless, our regression results are not very sensitive to the adjustment.

B Theory

B.1 Intermediate calculations

This section provides the intermediate steps needed to derive the value functions of equation

(3) and (4), the benefit function of equation 5, and the condition under which competition

reduces the benefit of adoption (i.e., equation (9)). First, it is simple to solve explicitly for

the future value of adoption, V 1(N) because once the adoption decision is irreversible. In

particular, the value function vector can be written as

V 1(N) = Π0

(
π1 + δ

(
∞∑
t=0

δtΠt
1π1

))
(B.1)

= Π0

(
I + δ(I − δΠ1)−1

)
π1, (B.2)

and this is equation (3). We have re-expressed profit such that π1 = π(c1, N) for notional

brevity, and we also will use π0 = π(c0, N) in this appendix. Second, although it is slightly

more complicated to solve for V 0(N), we can apply a similar idea to the one above. The
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(L+ 1)th element of V 0(N) is given by

V0(L;N) = F (k∗(L))v1(L;N) + (1− F (k∗(L))v0(L;N) (B.3)

Plugging in for v1(·) and v0(·) based on equation (2) yields

V0(L;N) = P 0(L)′
(
F (k∗(L))(π1 + δV 1(N)) + (1− F (k∗(L))(π0 + δV 0(N))

)
− F (k∗(L))E(k|k < k∗(L))

The term in the second line of this equation is the conditional expected cost of adoption.

Now plugging in for V 1(N) based on equation (B.2) yields:

V0(L;N) = P 0(L)′
(
F (k∗(L))

(
I + δΠ0

(
I + δ(I − δΠ1)−1

))
π1

)
+ P 0(L)′

(
(1− F (k∗(L))(π0 + δV 0(N))

)
− F (k∗(L))E(k|k < k∗(L))

Stacking the V0(L;N) elements for L = 0, . . . , N − 1 yields an equation that defines V 0(N):

V 0(N) = Π0

(
D
(
I + δΠ0

(
I + δ(I − δΠ1)−1

))
π1 + (I −D)π0 + δ(I −D)V 0

)
+Dκ

where D is a diagonal matrix with F (k∗(L)) on each (L+ 1)st diagonal element, and κ is a

vector with E(k|k < k∗(L)) for each (L+ 1)st element. Solving for V 0 obtains

V 0(N) = (I − δΠ0(I −D))−1Π0D
(
I + δΠ0

(
I + δ(I − δΠ1)−1

))
π1

+ (I − δΠ0(I −D))−1Π0(I −D)π0 (B.4)

+ (I − δΠ0(I −D))−1Dκ

The benefit of adoption given state L is defined in the main body of the text as

b(L;N, k) = v1(L;N, k)− v0(L;N). Stacking across states yields the vector

b(N, k) = Π0 (π1 + δV 1(N)− π0 − δV 0(N))− k (B.5)

The benefit of adoption can be evaluated by plugging in using the value functions defined
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in equations (3) and (B.5). This obtains

b(N, k) = Π0(π1 − π0)− k

+ δΠ0(Π0(I + δ(I − δΠ1)−1))π1

− δΠ0(I − δΠ0(I −D))−1π0 (B.6)

− δΠ0(I − δΠ0(I −D))−1[Π0D(π1 − π0)−Dκ]

− δ2Π0((I − δΠ0(I −D))−1Π0DΠ0(I + δ(I − δΠ1)−1))π1

The intermediate matrices that convert this into equation (5) are given by:

A(Π0,Π1) = Π0(I + δ(I − δΠ1)−1)

B(Π0) = (I − δΠ0(I −D))−1

and, again, D is a diagonal matrix with F (k∗(L)) on each (L + 1)st diagonal element.

If adoption probabilities are small, which is the case in our empirical setting, then Π0

and Π1 are close to the identity matrix and D is close to the zero matrix. This causes

preemption incentives and the option value to be small. Tracing the implications through

the intermediate matrices, the benefit can be approximated as

b(N) ≈ − 1

1− δ
(π1 − π0)− k, (B.7)

We turn now to equation (9). What must be derived is the condition under which

b(L;N) > b(L;N + 1), keeping in mind that L enters the b(·) function through the average

industry cost c. Plugging in based on equations (7) and (8) yields

N + 1

N + 2

a− ĉ+ (N + 1)(c− ĉ)
N + 2

<
N

N + 1

a− ĉ+N(c− ĉ)
N + 1

(B.8)

Rearranging the sides of the equation yields[
(N + 1)2

(N + 2)2
− (N)2

(N + 1)2

]
(c− ĉ) <

[
N

(N + 1)2
− (N + 1)

(N + 2)2

]
(a− ĉ)

and a few more lines of algebra obtain the equation shown in the text.
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B.2 Proposition 1

Discussion: States in the special class are characterized by a number of adopters L∗ such

that the (L∗ + 1, L∗ + 1) element of the industry transition matrix Π̃ equals one, and the

(L∗, L∗+1) element of Π̃ is positive. Suppose that adoption occurs given some industry state

and cost draw. Then it follows that “non-strategic” adoption would occur, conceptualizing

this as being driven by a cut-off rule that does not account for the possibility that competitors

also might adopt. Thus, the absorbing state of interest is defined by some L∗ that satisfies

(1− δ)k ≤ q∗(c1, L
∗;N)2 − q∗(c0, L

∗ − 1;N)2 (B.9)

and

(1− δ)k > q∗(c1, L
∗ + 1;N)2 − q∗(c0, L

∗;N)2 (B.10)

recalling that π(cx, L;N) = (q∗(cx, L;N))2 for x ∈ {0, 1}. The first inequality states that

non-strategic adoption occurs given state L∗− 1 and a cost draw of k. The latter inequality

states that adoption does not occur at state L∗. Its derivation does not require integration

over competitor actions because L∗ is an absorbing state. We first establish three useful

lemmas and state a corollary.

Lemma 1: q∗(c1, L;N) = q∗(c0, L;N) + ∆c for any L.

Proof: The relationship is derived from the expressions for equilibrium quantities provided

in Section 2.3. Adding ∆c to both sides of equation (7) yields

q∗(c0, L;N) + ∆c =
a− c0 +N(c− c0)

(N + 1)
+
N + 1

N + 1
∆c

=
a− (c0 −∆c) +N(c− (c0 −∆c))

(N + 1)

=
a− c1 +N(c− c1)

(N + 1)

= q∗(c1, L;N)

The third line uses the definition ∆c = c0 − c1. QED.

Lemma 2: q∗(c0, L;N) = a−c0−L∆c
N+1

Proof: The relationship again is derived from the expressions for equilibrium quantities

49



provided in Section 2.3. From equation (7),

q∗(c0, L;N) =
a− c0 +N(c− c0)

(N + 1)

=
a− (N + 1)c0 +Nc

(N + 1)

=
a− (N + 1)c0 + Lc1 + (N − L)c0

(N + 1)

=
a− (L− 1)c0 + Lc1

(N + 1)

=
a− c0 − L∆c

(N + 1)

The fifth line uses the definition ∆c = c0 − c1. QED.

Lemma 3: Interior solutions L∗ ∈ [0, N ] satisfy the inequalities

L∗ ≤ N + 2

2
+
a− c0

∆c
− (1− δ)k

2(∆c)2

(N + 1)2

N
< L∗ + 1

An implication of Lemma 3 is that the number of adopters can increase or decrease in N .

This ambiguity arises because adding firms damps adoption incentives but increases the pool

of possible adopters. The net effect depends on the parameter values.

Proof: Using Lemma 1, the inequalities (B.9) and (B.10) can be expressed

(1− δ)k ≤ [q(c0, L
∗;N) + ∆c]2 − q(c0, L

∗ − 1;N)2 (B.11)

(1− δ)k > [q(c0, L
∗ + 1;N) + ∆c]2 − q(c0, L

∗;N)2 (B.12)

Next, applying the factoring relationship x2 − y2 = (x+ y)(x− y) provides

(1− δ)k ≤ (q0(L∗) + ∆c+ q0(L− 1)) (q0(L∗) + ∆c− q∗0(L∗ − 1)) (B.13)

(1− δ)k > (q0(L∗ + 1) + ∆c+ q0(L∗)) (q0(L∗ + 1) + ∆c− q∗0(L∗)) (B.14)

where we have suppressed the c0 and N arguments for notational brevity. Focus on the top

inequality. Substitute for q0(L) using Lemma 2. With some factoring, this yields

(1− δ)k ≤
(

2
a− c0

N + 1
−
(

L∗

N + 1
+
L∗ − 1

N + 1

)
∆c+ ∆c

)(
− L∗

N + 1
∆c+

L∗ − 1

N + 1
∆c+ ∆c

)
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Next, collecting terms yields

(1− δ)k ≤
(

2
a− c0

N + 1
+
N − 2L∗ + 2

N + 1
∆c

)(
N

N + 1
∆c

)
Move now to the bottom inequality (i.e., inequality (B.14)). The same manipulations yield

(1− δ)k >
(

2
a− c0

N + 1
+
N − 2(L∗ + 1) + 2

N + 1
∆c

)(
N

N + 1
∆c

)
Combine the previous two inequalities, divide by N

N+1
∆c, and subtract 2a−c0

∆c
. This yields:

N − 2(L∗ + 1) + 2

N + 1
∆c <

(1− δ)k
∆c

N + 1

N
− 2

a− c0

N + 1
≤ N − 2L∗ + 2

N + 1
∆c

Multiply by N + 1, divide by ∆c, and subtract N + 2. This yields

−2(L∗ + 1) <
(1− δ)k

(∆c)2

(N + 1)2

N
− 2

a− c0

∆c
− (N + 2) ≤ −2L∗

Finally, divide by negative two. This flips the direction of the inequalities and obtains the

expression in Lemma 3:

L∗ ≤ N + 2

2
+
a− c0

∆c
− 1

2

(1− δ)k
(∆c)2

(N + 1)2

N
< L∗ + 1 (B.15)

QED.

Corollary: Interior solutions L∗ ∈ [0, N ] also satisfy the inequalities

L∗

N
≤ N + 2

2N
+

1

N

a− c0

∆c
− (1− δ)k

2(∆c)2

(N + 1)2

N2
<
L∗ + 1

N

The corollary derives bounds for the fraction of firms that adopt in the absorbing state. It

is sometimes more convenient to work with the fraction in the proof of proposition 1.

Proof of Proposition 1: The first part of the proposition states that k ≤ 0 implies L∗ = N .

This follows immediately from the assumptions of the model. Adoption happens (eventually)

for any L < N because π(c1, L;N) − π(c0, L;N) ≥ (1 − δ)k always if k ≤ 0, and this leads

to L∗ = N .

We turn now to the remainder of the proof. Denote the bound on the fraction of firms
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that adopt in the absorbing states as X(N). From the corollary to Lemma 3,

X(N) =
N + 2

2N
+

1

N

a− c0

∆c
− (1− δ)k

2(∆c)2

(N + 1)2

N2

By inspection, the limit of X(N) is given by

lim
N→∞

X(N) =
1

2
− (1− δ)k

2(∆c)2

This limit is less than half for any positive k. Thus, there exists some n1 such that if N > n1

then L∗/N < 1
2
< 1 and L∗ < N . Further, if (1 − δ)k > (∆c)2 then the limit is negative,

and there exists some n2 > n1 such that if N > n2 then L∗/N = L∗ = 0. It remains to be

shown that if N > n1 then L∗ weakly decreases in N . Here it is simpler to work with the

bound on L∗, which we denote Y(N). From Lemma 3,

Y (N) =
N + 2

2N
+
a− c0

∆c
− (1− δ)k

2(∆c)2

(N + 1)2

N

Taking a derivative yields

∂Y (N)

∂N
= − 1

N2
− 1

2

(1− δ)k
2(∆c)2

(N + 1)2

N

which is negative for any positive k. Thus, L∗ at least weakly decreases in N for any N > n1

if k > 0. QED.

C Additional Figures and Tables

52



Table C.1: Parameterizations used for Numerical Simulations

Figure 1 Figure 3
Parameter Top Bottom Figure 2 Top Bottom Figure 4 Figure 5

a 2.50 3.72 4.00 4.12 3.00 30 3.72
c0 1.00 0.31 1.00 1.60 1.97 1.5 0.31
c1 0.70 0.21 0.90-0.50 1.06 1.77 0.5 0.21

k 5.00 5.00 3.00 5.00 5.00 · 5.00
k 1.00 1.93 0.00 3.10 1.21 40 1.93
δ 0.95 0.95 0.95 0.95 0.95 0.90 0.95
N 5 5 1-5 3-5 3-5 Many 3-5

Notes: The table provides the parameterizations used in Section 2. Adoption costs are assumed
to have the uniform distribution.

Table C.2: Probit Regression Results with Interaction

Equation for Shut Down vs. Maintain
Regressor (i) (ii) (iii) (iv)

Fuel Costs, Competition, and Demand

Fuel Costs 0.009 0.006 -0.022* -0.032***
(0.010) (0.010) (0.013) (0.010)

Competitors 0.008 0.004 -0.015 -0.026**
(0.013) (0.015) (0.015) (0.012)

Fuel Costs 0.000 0.000 0.001*** 0.001***
×Competitors (0.000) (0.000) (0.000) (0.000)

Construction -0.027** -0.026** -0.018 -0.005
(0.011) (0.012) (0.012) (0.009)

Mean Elasticities of Pr(Shut Down)

WRT Fuel Costs 0.52** 0.50** 0.10 -0.25
WRT Competitors 0.59** 0.54* 0.45 0.24
WRT Construction -0.73*** -0.70** -0.51* -0.16

Specification Details

Time Polynomial no 1st Order 5th Order no
Year Fixed Effects no no no yes

Notes: The table summarizes results obtained from multinomial probit regres-
sions in columns (i)-(iii) and a binomial probit regressions in column (iv). The
sample is comprised of 8,192 kiln-year observations over 1973-2013. The ex-
cluded instrument in the first stage is a 20-year lag on the number of nearby
competitors. The elasticities are calculated for each observation and summa-
rized with the mean. Standard errors are shown in parentheses. Statistical
significance at the 10%, 5%, and 1% levels are denoted with *, **, and ***,
respectively.
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