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Abstract: Scientific discoveries in academia can spur innovation and economic growth, but only 

if they flow to industry. This paper documents a source of friction in the flow of academic 

science to firms: corporate inventors tend to overlook academic discoveries that emerge outside 

concentrations or “hubs” of commercial R&D in the same particular field. Testing the impact of 

location on knowledge flow is difficult because institutions at different locations produce 

different kinds of research. We address this problem by analyzing simultaneous discoveries 

where multiple researchers publish “twin” papers which report the same finding. Even after 

accounting for the localization of knowledge flows, we find that a twin paper conducted outside 

of a hub of relevant R&D is approximately 10% less likely to be referenced as prior art by firm-

assigned patents. This effect is moderated by collocation with the focal patent, the institution’s 

academic prestige, and by formal connections with industry. Taken together, our results suggest 

that the geographic location of academic institutions affects the chances that their discoveries 

become orphaned, with sobering implications for the science of science policy yet strategic 

opportunities for firms. 
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Academic research is an essential engine of innovation and growth (Romer 1990; Grossman and Helpman 

1993; Aghion, Dewatripont, and Stein 2008), with governments across the world investing billions 

annually in the hope that economic benefits will follow. Although academic research can increase an 

industry’s R&D efficiency (Nelson 1959; Nelson 1982; Cohen, Nelson, and Walsh 2002; Mokyr 2002), 

such benefits accrue only if this knowledge flows to firms. Such concerns are not just theoretical: NIH 

director Francis Collins declared that he was “frustrated to see how many of the [academic] discoveries 

that do look as though they have therapeutic implications are waiting for the pharmaceutical industry to 

follow through with them” (Harris 2011). This observation reflects the need for greater understanding of 

the circumstances under which valuable academic knowledge fails to be utilized in the private sector.  

 The flow of scientific knowledge to industry may be affected by the location of the academic 

research institution where it originates. Since much knowledge flow is localized, location might affect 

knowledge flow because of the geographic distance that separates academic research institutions from 

firms (Jaffe, Trajtenberg, and Henderson 1993; Zucker, Darby, and Brewer 1998; Adams 2002; 

Thompson 2006; Furman and MacGarvie 2007; Azoulay, Graff Zivin, and Sampat 2012; Belenzon and 

Schankerman 2013). However, the impact of location on knowledge flow may not be limited to 

geographic distance between the source and recipient of the knowledge. We suggest that knowledge is 

likely to circulate more widely when it emerges in locations that are central to the community of 

commercial inventors. Conversely, discoveries from less central locations are less likely to be utilized.  

Consider a San Diego-based biotech firm building on scientific knowledge discovered 

simultaneously by academic researchers in both Dallas, TX and Boston, MA. One might expect that the 

biotech firm is more likely to utilize the Dallas discovery since it is closer. However, we predict that the 

firm will exploit the other discovery because Boston is more a “hub” of biotech R&D. Academic research 

conducted in commercial R&D hubs in that same field is likely to receive more exposure than the same 

research conducted outside such a hub. Not only are corporate inventors likely to monitor new findings 

coming out of those hubs, but they are also likely to be familiar with the individuals and firms that work 

there. Hence, the location of an academic institution inside a hub can offset distance as a constraint on 

diffusion, and valuable knowledge developed outside of such hubs is at a higher risk of being ignored. 

 Indeed, Appendix I suggests that academic discoveries published even in top scientific journals 

are less likely to flow to industry (as measured by references from patents assigned to firms, see 

Appendix III) when the paper is published at an institution that is outside a hub of commercial R&D in 

that specific scientific field (see Appendix IV). Studying this phenomenon in a large sample of academic 

publications referenced by corporate patents affords a measure of external validity, but this approach is 

vulnerable to the criticism that scientific discoveries conducted inside hubs of commercial R&D may 

differ fundamentally from those emerging from outside such hubs. Industry inventors might ignore a 
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scientific discovery not because of its location but because it is less “applied” or simply of lower quality. 

There may in fact be a causal loop between industry demand for specific research and academic output; 

the direction of academic science is in part endogenous to local firms’ research priorities (Sohn 2014). 

Therefore, although we are interested in the marginal impact of location of the academic institution on 

knowledge flow to industry, a selection effect could confound inference even if academic knowledge 

more relevant to industry is seen to emerge in institutions that happen to be located in R&D hubs.    

To address these issues, we exploit the occurrence of simultaneous scientific discoveries (Merton 

1961)1. When two or more scholars publish their findings at about the same time, they create “paper 

twins.”  By embodying a single piece of knowledge that emerged in multiple locations, paper twins 

control for the nature of the underlying science. We measure the flow of academic discoveries to industry 

by observing references from firm-assigned patents to paper twins where one twin is within a hub of 

relevant R&D and the other is not. We thus build on a large literature using references in patents and 

publications as a measure of knowledge flow (Jaffe, Trajtenberg, and Henderson 1993; Griliches 1998; 

Furman and Stern 2011; Galasso and Schankerman 2014).  

Our empirical strategy has three key advantages. First, the use of patent references as a measure 

of knowledge flow is usually complicated by the possible existence of false positives, as citations are 

often added ex-post for legal or strategic reasons (Alcácer, Gittelman, and Sampat 2009; Lampe 2012). In 

the case of paper twins, however, our identification strategy is facilitated  by USPTO Rule 56, which 

states that an inventor is not required to reference multiple sources disclosing the same prior art. Thus if 

a simultaneous discovery were relevant prior art, but the patent referenced only one of the “twin” papers 

reporting that discovery, failing to reference another twin paper would not affect the validity of the patent. 

This rule opens the possibility for a patent to reference one member of a twin set but not the other, 

allowing our study to focus on the question of why that twin was the one referenced. 

Second, since academic discoveries tend to be published and not patented, a focus on references 

to academic patents could introduce a bias by excluding the majority of academic discoveries. We 

circumvent this difficulty by using patent applicants’ references not to other patents but to scientific 

articles (e.g., Belenzon and Schankerman 2013; Azoulay, Graff Zivin, and Sampat 2012). While 

references from patents to scientific publications by no means capture every flow of academic knowledge 

to commercial R&D, Roach and Cohen (2013) report that they may be the most reliable indicator.  

Third, as in any case-control analysis, inference depends on the similarity between treatment and 

                                                      

1 We focus on natural sciences, but simultaneous discoveries also occur elsewhere such as the 

existence of a competitive equilibrium in a market economy by McKenzie and by Arrow-Debreu in 1954 

(Weintraub 2011); other cases have also been reported (Stigler 1980; Niehans 1995).  
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controls (Thompson and Fox-Kean 2005). Drawing inferences regarding the influence of location on the 

flow of knowledge from academia to industry is challenging because discoveries in multiple locations 

may differ in several respects. As noted above, an academic paper might appear to receive less exposure 

to industry because it is in a remote location, but perhaps this is due to the discovery being more basic, or 

theoretical, and hence of less interest to firms. To the extent that our “twin” papers truly represent the 

same discovery, they provide an opportunity to control for the quality of the underlying discovery. 

By examining patent references to twin papers, we replicate the established finding that the flow 

of academic knowledge to industry attenuates with spatial separation between the academic scientist and 

the firm (Jaffe, Trajtenberg, and Henderson 1993; Belenzon and Schankerman 2013; Mowery and 

Ziedonis 2015). We also show that controlling for localization, academic discoveries made outside of 

relevant commercial R&D hubs are less likely to flow to inventors working in firms. This result is robust 

to a number of specifications and is only visible among corporate (not academic) inventors. However, this 

effect is attenuated in the following circumstances: 1) for institutions with formal connections to industry, 

2) for papers at institutions with a higher academic reputation, and 3) when the focal paper and the 

potentially-referencing patent are themselves collocated. Thus it appears that the negative impact of being 

outside of an R&D hub is mitigated when commercial inventors are exposed to a paper by other means. 

 Our findings suggest that public investment in academic research outside of relevant hubs of 

commercial R&D activity may fail to flow to industry and thus not benefit the economy. A second 

troubling implication is for the scientists themselves: two scientists of equal academic ability and with 

similar interests in having their work disseminated to the commercial world may be differently rewarded 

by virtue of working at an institution that is located inside vs. outside a hub of relevant R&D.  

1. The Location of Academic Institutions and Knowledge Flow to Industry  

A. The Flow of Academic Science to Industry 

Scientific knowledge can increase R&D efficiency because it guides the invention process (Nelson 1982; 

Mokyr 2002). Large-scale empirical studies have established a link between university research and 

corporate patenting (Jaffe 1989) as well as productivity growth (Adams 1990). Using a survey of 77 

major firms in various industries, Mansfield (1998) found that more than 5% ($44bn) of the total 1994 

product sales of those firms were directly due to innovations that might not have been possible in the 

absence of academic research. Cohen, Nelson, and Walsh (2002) show that firms use academic 

knowledge both to generate new ideas and to address existing R&D problems.  

Considering the economic value of academic discoveries, concerns have long been voiced that 

frictions might prevent the flow of that knowledge to industry. Charles Babbage argued that “the man of 

science should mix with the world” (Babbage 1832, 384), not only to ensure that he investigates 

important questions but also so that knowledge flows to manufacturers. Similarly, Mokyr (2002, 7) 
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proposes that “progress in exploiting the existing stock of knowledge will depend first and foremost on 

the efficiency and cost of access to knowledge.”  This paper explores this proposition empirically, 

focusing in particular on the impact of the geographic location of academic research institutions. 

B. Geographic Location and the Flow of Academic Science to Industry 

The flow of academic science to firms may be impeded by the fact that academic research institutions and 

industrial R&D labs are not always collocated. Audretsch and Feldman (1996) find that the bulk of 

innovative activity in the U.S. occurs on the coasts, especially in industries where scientific knowledge 

plays a decisive role. What complicates the process of knowledge diffusion is that academic research 

takes place in many locations, including at institutions not close to centers of commercial innovation. The 

sharp contrast between the geographic dispersion of academic scientists and the spatial concentration of 

industrial R&D activity is clearly visible in the case of the biotechnology industry. Analyzing 

biotechnology firms that completed an IPO in the early 1990s, Audretsch and Stephan (1996) link the 

location of biotechnology firms with that of academic scientists who had relationships with these 

companies. While 69% of the firms in their sample were based in Boston, the San Francisco Bay area, 

and San Diego, those regions accounted for only 36% of all academic contacts. A number of academic 

institutions elsewhere conducted leading-edge academic research but did not appear to be connected to 

any local biotechnology firms (e.g., Yale and the University of Texas Southwestern Medical Center).2  

In principle, the distinct geographic distributions of academic scientists and the consumers of 

their discoveries in industrial R&D laboratories might not necessarily affect the flow of scientific 

knowledge. The academic environment is distinctive in its openness, and new discoveries are widely 

published (Merton 1973; Dasgupta and David 1994; Stephan 1996). Besides, location might not result in 

frictions if firms located further away from academic institutions do not have the same knowledge needs 

as those that are nearby. In practice, however, corporate inventors’ limited visibility into the latest 

academic developments means that they might not exploit every potentially beneficial academic 

discovery. The flow of academic knowledge to corporate inventors might be imperfect because access to 

the scientific literature is not costless (Cohen and Levinthal 1989; Mokyr 2002). Inventors keep track of 

the latest academic developments in their fields through a variety of channels such as specialized journals 

and websites, professional conferences, through friends and colleagues, and by reading the work of 

academic scientists in their field. Considering inventors’ limited time and resources, they are unlikely to 

be able to remain up-to-date with all relevant and useful academic knowledge in their field. 

                                                      

2 In our data, public universities are generally located further from industry, perhaps due to land-

grant provisions; however, controlling for private-vs-public institutions does not explain our findings. 
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The clearest evidence of frictions in the flow of knowledge may be the well-documented impact 

of geographic distance on the flow of knowledge. A number of studies have found that firms located in 

close proximity to academic institutions exploit their research more than firms that are located further 

away (Jaffe, Trajtenberg, and Henderson 1993; Zucker, Darby, and Brewer 1998; Furman and MacGarvie 

2007; Belenzon and Schankerman 2013). This paper goes beyond prior work on geography and diffusion, 

which has focused largely on the distance separating an academic scientist and a particular firm that might 

utilize that scientist’s knowledge. Instead, we focus on whether a focal academic scientist is located 

where similar commercial R&D is being conducted. In other words, the location of an academic research 

institution inside or outside of a “hub” of relevant commercial R&D will have important implications for 

knowledge flow, especially to distant firms. R&D “hubs” are central areas of knowledge generation and 

exchange among collaborators, competitors, and beyond. Commercial inventors trying to stay current 

with the latest innovations in their field may be more likely to be exposed to new academic developments 

that emerge in locations where similar commercial R&D is also happening.  

Commercial inventors may be exposed to academic discoveries in the vicinity of such hubs for a 

variety of reasons. First, the concentration of R&D activity in a particular field may focus firms on that 

geographic region. While keeping up on developments of collaborators and competitors alike, they may 

thus become aware of academic discoveries in the same location. Second, because informal interactions 

between academic and commercial scientists are more likely to arise when the two groups are in close 

proximity (Mowery and Ziedonis 2015), commercial inventors in such hubs are likely to become aware of 

new discoveries by nearby academic scientists. To the extent that these commercial inventors then relay 

information regarding new discoveries to commercial inventors outside the hub, academic discoveries 

located near hubs of commercial R&D may flow to far-flung firms. Third, hubs of commercial R&D in 

particular fields may tend to host conferences and other formal gatherings of both commercial and 

academic scientists, further facilitating the flow of knowledge. By contrast, industry inventors may be 

more likely to overlook valuable discoveries that emerge outside those hubs. 

2. Data Construction 

A. Empirical Approach 

Identifying the impact of the location of academic research institutions on knowledge flow to industry is 

nontrivial because the emergence of academic discoveries in specific locations is not exogenous to the 

geographic distribution of commercial R&D. Firms influence nearby academic research (Sohn 2014). For 

our purpose, this raises a well-known identification challenge. How can the empiricist “divine whether a 

particular citation would have taken place, if contrary to the fact, either the citing or the cited producer 

had been located elsewhere?” (Azoulay, Graff Zivin, and Sampat 2012, 13). 
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To address this challenge, we use simultaneous discoveries in science. Because simultaneous 

discoveries constitute instances in which the same knowledge emerges in multiple locations, “paper 

twins” present a unique opportunity to unbundle producers from their products. Rather than creating a 

control sample of non-referenced publications or patents (Jaffe, Trajtenberg, and Henderson 1993; 

Thompson and Fox-Kean 2005), these paper twins allow us to measure knowledge flow and non-flow 

directly by examining patent references to the academic publications which make up each set of twins 

while accounting for the characteristics of the individual scientists and of their institution. The next three 

sections describe (1) the paper twins; (2) measuring the flow of academic discoveries to industry; and (3) 

the construction of “hubs” of commercial R&D that are relevant to a particular discovery. 

B. “Paper Twins” 

This study is based on the first automatically and systematically collected dataset of simultaneous 

discoveries. Before describing the process by which such publications were found, we illustrate the nature 

of a simultaneous discovery with an example. The August 1998 issue of Cell contains two papers 

reporting the same scientific discovery, shown in Figure I. Both papers report the discovery of an 

important molecule involved in cell death or “apoptosis.” The two teams found that after activation of the 

death receptors on the cell membrane, the death signal is carried to the mitochondria by a cytosolic 

protein called BID. Confirming that these two papers truly report the same scientific discovery, an August 

21 2000 article in The Scientist notes that “[t]hese two Cell papers outline two independent identifications 

of a critical missing link in [the apoptosis] signaling pathway” (Halim 2000). Frequently in the case of 

simultaneous discoveries authors send their manuscripts to the same journal, sometimes leading to back-

to-back publications3 (in this case: pages 481-490 and 491-501). As we detail in Appendix II, 46% of the 

simultaneous discoveries in our dataset correspond to back-to-back publications. 

Figure I about here 

We exploit simultaneous discoveries to overcome the aforementioned identification problem 

inherent to analyzing the impact of location on knowledge flow. In line with prior findings that the flow 

                                                      

3 Editors sometimes decide to publish manuscripts back-to-back recognizing a tie in the race for 

priority, and allowing both teams to receive equal credit for their work. Well-known examples of back-to-

back publications include that of evolution by natural selection by Darwin and Wallace in the Journal of 

the Proceedings of the Linnean Society of London published on 20 August 1858 and the discovery by 

Richter and Ting of the J/ψ meson published in Physical Review Letters on 2 December 1974. While 

simultaneous discoveries appear often (but not always) back-to-back in scientific journals, not all back-to-

back publications correspond to simultaneous discoveries (Drahl 2014). 
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of knowledge is localized, we therefore consider that publication alone does not guarantee the perfect 

flow of academic knowledge to all inventors (Jaffe, Trajtenberg, and Henderson 1993; Azoulay, Graff 

Zivin, and Sampat 2012; Belenzon and Schankerman 2013). In practice, we measure the rate of 

dissemination by tracking the references to each scientific paper in patents. In the BID protein example, 

the paper located in Boston (where local firms perform R&D in similar fields) received more references 

from patents than did the paper in Dallas, which is largely isolated from relevant industry.  

 To detect simultaneous discoveries, an algorithm was built that identified frequently co-cited 

pairs of papers and then scrolled through the scientific literature to spot instances in which two papers are 

consistently cited in the same parenthesis, or adjacently. The method is detailed in a companion paper 

(Bikard 2012). For convenience, its main principles are summarized in Appendix II. The full dataset of 

simultaneous discoveries consists of 1,246 papers and 578 simultaneous discoveries. From this set, we 

discard 50 papers published by firms as our aim is to study the flow of academic knowledge.4 Given our 

interest in the flow of academic research to industry, we then drop 588 twin papers from simultaneous 

discoveries where none of the twin papers received any references from patents assigned to firms (see 

Appendix III). This could arise if none of the twin patents were referenced by any patent, or if they were 

referenced only by university patents (which we will later use in a placebo test). Finally, we removed 295 

twin papers where any patent referencing one of the twin papers references all of the twin papers (and 

thus does not provide variation on our dependent variable; however, these are reintroduced in robustness). 

Excluding those leaves 313 twin papers reporting 146 simultaneous discoveries.  

For each twin paper, we collect its geographic origin, the journal in which it was published, and 

whether the discovery was itself patented. (Whether the focal paper reporting a simultaneous discovery 

was patented by its authors is an essential control as doing so forms a “patent paper pair” (Murray 2002).) 

To account for the author heterogeneity, we collect the corresponding author’s stock of patents and papers 

at the time of publication. Similarly, we capture the institution’s stock of patents (past five years) as well 

as papers in the top 15 scientific journals, the latter serving as a measure of the institution’s prestige in the 

academic community. Summary statistics for all 1,196 academic twin papers are in Table I, segmented by 

whether none (588), all (295), or one (313) of the twins for a simultaneous discovery were referenced.  

Table I about here 

Table II provides a breakdown of the most frequent cities and institutions among the 313 twin 

papers in our analyses, for which one but not all twins for a simultaneous discovery were referenced. As 

                                                      

4 Of the remaining papers, 43% are referenced by a firm-assigned patent. By comparison, 

Azoulay, Graff Zivin, and Sampat (2012) report that 12% of the academic publications are ever cited in 

patents. Our rate is likely higher because our sample is composed of particularly important discoveries. 
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is visible in Panel A, many of our twin papers are published at high-status institutions, including nearly 

5% at Harvard University alone. This underscores both the importance of accounting for the prestige of 

the institution (since commercial inventors may be more likely to be exposed to such discoveries) as well 

as ensuring that our results are not driven by any one institution. A similar concern also applies in Panel 

B, which shows that nearly 20% of all twin papers are published in Boston, New York, and San Diego. 

Table II about here 

C. Measuring the Flow of Academic Science to Industry 

Tracking the flow of academic science to industry is challenging because such flows can take a variety of 

forms including licensing, consulting, strategic partnerships (Roach and Cohen 2013). In a landmark 

paper, Jaffe, Trajtenberg, and Henderson (1993) proposed that patent citations can be used to measure 

knowledge flow. Patent citations are readily available yet have important limitations. First, patent 

citations have legal implications since they delimit the scope of an invention. Patent citations are often 

added by patent attorney and patent examiners (Alcácer and Gittelman 2006; Alcácer, Gittelman, and 

Sampat 2009) and can be used strategically (Lampe 2012), significantly complicating the task of using 

citations as a measure of knowledge flow. Second, each patent is unique, making interpretation of non-

citation difficult since each applicant makes decisions about the relevance of a given article based on the 

particularities of the patent in question. Concerns regarding the definition of a control group of non-citing 

patents has led to major debates in the literature studying the localization of knowledge flows (Thompson 

and Fox-Kean 2005; Henderson, Jaffe, and Trajtenberg 2005). Third, not all knowledge is observable by 

looking at patents (Griliches 1990); specifically, academic institutions primarily disclose knowledge 

through scientific publications rather than patenting, so their output is invisible through direct patent 

search (Agrawal and Henderson 2002; Belenzon and Schankerman 2013; Roach and Cohen 2013).  

Measuring the flow of academic knowledge to industry via patent references to academic articles 

(e.g., Belenzon and Schankerman 2013; Azoulay, Graff Zivin, and Sampat 2012) helps overcome these 

challenges. Importantly, while patent-to-paper references cannot capture all relevant flows such as those 

occurring via private interactions, 5 Roach and Cohen emphasize that “citations to nonpatent references, 

such as scientific journal articles, correspond more closely to managers’ reports of the use of public 

research than do the more commonly employed citations to patent references” (Roach and Cohen 2013, 

505). In addition, the large majority of simultaneous discoveries in our sample are in life sciences (to 

which most of the highest-impact-factor scientific journals belong); this is advantageous because in the 

                                                      

5 The fact that references cannot measure this type of private and uncodified knowledge flow is 

likely to bias our results toward under-estimating the impact of location as a driver of knowledge flow 

because these private interactions tend to be more local (Mowery and Ziedonis 2015). 
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life sciences the use of publications and patents by firms is widespread, making scientific references from 

(but not to) patents a more accurate indicator of knowledge flow than they might be in other fields. 

Another advantage of using patent-to-paper references stems from the fact that while every patent 

by definition represents a unique discovery; the patent system does not recognize “ties” in the race for 

priority; thus simultaneous or independent inventions are debated by legal scholars (Vermont 2006; 

Lemley 2007). But the same is not true for scientific publications: when two researchers make the same 

discovery and send it for publication at around the same time, multiple papers can be published disclosing 

very similar knowledge (e.g., Cozzens 1989). Hence, it may be that an inventor is not aware of both 

papers reporting a single discovery that needs to be referenced by the patent as prior art. 

Indeed, the U.S. Patent and Trademark Office imposes no duty on the inventor to reference every 

paper “twin” disclosing the same simultaneous discovery. According to USPTO Rule 56 (37 CFR 1.56): 

“information is material to patentability when it is not cumulative to information already of record or 

being made of record in the application.” In other words, if multiple papers disclose the same knowledge, 

referring to one of them is sufficient. Of course the inventor may reference all relevant twin papers, and 

this is not uncommon as shown in Table I. Of the 608 twin papers where the simultaneous discovery was 

referenced by a patent, nearly half of the time (295) every twin was referenced whereas in the slight 

majority of cases (313) one twin but not all were referenced. That inventors do not always reference only 

one twin raises the question of whether they are unaware of the others vs. reluctant to reference them. 

It seems unlikely that inventors would be reluctant to reference twin papers of which they are 

aware simply for reasons of cost or convenience. Many patents list dozens of scientific articles, and unlike 

some scientific publications the USPTO does not impose constraints as to the maximum number of 

references that can be included. Still, scientists tend to prefer citations to prominent peers in their 

scientific publications (Merton 1968), and one could be worried that the same might be true of inventors 

who might prefer references to publications stemming from more prestigious institutions. Our results 

regarding commercial R&D hubs facilitating the flow of knowledge from academia to industry might be 

questioned if inventors generally favored referencing papers by high-status authors or institutions that 

happened to be located in hubs. In addition, many prestigious institutions are located far from commercial 

hubs in specific fields. In line with this reasoning, we find no strong correlation between the academic 

prestige of a paper’s author or institution and its likelihood of being referenced by a focal patent. 

Unlike patent citations to other patents, references to scientific publications are not 

straightforward to analyze. Appendix III details our approach for linking papers and patents. After 

locating all patent-to-paper references, we exclude two types of self-references (results are robust to 

including self-references). First, if the surname and first initial of any author on the paper matches any 

inventor on the patent, we remove the paper-patent dyad from consideration. (References from within the 
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same organization, typically excluded from patent-citation studies, are not of concern because the patents 

are from firms while the papers are from academic institutions.) Second, we reviewed the 

acknowledgments section of each paper and then excluded references where the patent assignee was 

acknowledged as a sponsor of that research. This exercise yields our dependent variable REFERENCED.   

D. Measuring the Location of Relevant Hubs of Commercial R&D 

Establishing hubs of commercial R&D in a particular scientific field is not straightforward. Unlike 

national borders, state borders, or metropolitan statistical areas studied in prior work (e.g., Jaffe, 

Trajtenberg, and Henderson 1993; Thompson and Fox-Kean 2005; Singh and Marx 2013; Belenzon and 

Schankerman 2013), the location of such hubs are not readily available from administrative records. In 

fact, they are likely to be field specific and to evolve over time (Feldman and Florida 1994). 

To measure whether an academic institution is located inside or outside a relevant hub of 

commercial R&D, we focus on inventive activity (a) in the relevant scientific field (b) within 5 years of 

the discovery and (c) within commuting distance of the institution. We label a location as a “hub” of 

commercial R&D for a USPTO subclass / 5-year period if more than 5% of all patents in that 

subclass/period are located within a 50-mile radius. The details of our algorithm and reasons for choosing 

these particular thresholds are given in Appendix IV. 

To illustrate the concept of being located inside or outside of a hub of relevant commercial R&D, 

we return to our simultaneous discovery from Figure I. Again, we examine two papers in the August 1998 

issue of Cell, one at Harvard Medical School in Boston, MA and another at UT Southwestern Medical 

Center in Dallas, TX. In determining whether either of these research teams was inside or outside of the 

R&D hubs relevant to this simultaneous discovery, we first note that 19 patents list one of these papers as 

a scientific reference. We then define the scope of relevant R&D by obtaining the USPTO technological 

subclasses for these patents. A few have the same classification, yielding 17 unique subclasses.  The next 

step is to locate “hubs” of commercial R&D in these technological areas. We find 3858 firm-owned 

patents that were assigned to these subclasses during 1995-1999. The locations with R&D “hubs” 

containing more than 5% of patenting activity for the above 17 subclasses include Milan, Italy; La Jolla, 

Santa Clara, and Solana Beach, California; Canton, Massachusetts; Silver Spring, Maryland; Berkeley 

Heights, New Jersey, and Bainbridge Island, Washington. 

We then check whether either institution is within commuting distance of those locations. While 

Boston is within 50 miles of Canton, Massachusetts, Dallas is far from any of the cities listed. Thus we 

classify the paper published in Dallas as lying outside a hub of relevant commercial R&D. (Note: in the 

case where papers have authors from multiple institutions, we check whether any institution at which any 

of the authors is located is within commuting distance of the relevant R&D hubs.) Applying this 

definition, 79.9% of the papers found in our sets of twins are outside of a hub of relevant commercial 
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R&D. In many cases, both twin papers reporting a simultaneous discovery are located outside R&D hubs.  

F. Empirical Setup 

Our analysis leverages the simultaneous-discovery nature of our data since a patent that references one 

paper is presumably at a similar risk of referencing any of its “twins” as shown in Figure II. An 

observation is a dyad of a published paper reporting a simultaneous discovery and a patent at risk of 

referencing the paper. To obtain a dataset that includes not only realized references but also unrealized 

references to twins of a focal paper, we pair each patent that references one of the 313 papers with the 

other “twin” papers that disclose the same simultaneous discovery. That is, given a pair of twin papers 

where one of the papers is referenced by a later patent, we also create an observation for that same patent 

together with the twin paper that was not referenced but could have been, given that the twin papers 

disclose the same simultaneous discovery. This process yields 1,638 paper-patent dyads. 

Figure II about here 

For each paper-patent dyad representing a (potential) scientific reference, we account for both 

temporal and spatial separation between the paper and patent. Given that our key explanatory variable 

reports whether a paper is located outside a hub of relevant R&D activity, the distance between paper and 

potentially-referencing patent is perhaps our most important control. One might worry that papers lying 

outside of R&D hubs are simply further away from potentially-citing patents and thus may be less likely 

to be referenced by those patents for reasons previously established in the literature on distance and 

knowledge diffusion. We control for distance in a linear fashion with the logged count of miles between 

the paper and potentially-referencing patent. Also, twin papers are usually but not always published in the 

same calendar year, so we control for the lag between the publication of the twin and the potentially-

referencing patent. Summary statistics are in Table III. 

Table III about here 

We specify a conditional logit model with fixed effects for the simultaneous discovery and a focal 

patent that references one but not all twins reporting that discovery. Thus, for a given patent that is 

arguably at equal risk of referencing any of the twin papers, our analysis reveals the factors associated 

with a particular twin being referenced. The regression equation is given as 

𝑅𝐸𝐹𝐸𝑅𝐸𝑁𝐶𝐸𝐷𝑖𝑗𝑘 =  𝑓(𝜀𝑖𝑗𝑘;  𝛼0 +  𝛼1𝑂𝑈𝑇𝑆𝐼𝐷𝐸_𝑅&𝐷_𝐻𝑈𝐵𝑆𝑖 +  𝛼2°�̅�𝑖𝑘 +  𝛾𝑗𝑘) 

where j represents the simultaneous discovery, i represents the paper reporting the simultaneous 

discovery, and k represents the potentially-referencing patent. 𝑂𝑈𝑇𝑆𝐼𝐷𝐸_𝑅&𝐷_𝐻𝑈𝐵𝑆𝑖 is the main 

explanatory variable and is defined at the paper-patent dyad level as described in Appendix IV. 𝛾𝑗𝑘 is a 

simultaneous-discovery/patent fixed effect, which allows us to be unconcerned with characteristics of the 

patent (such as the assignee) other than in relation to one twin paper vs. another. Finally, 𝑋𝑖𝑘 is a vector of 
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covariates including the geographic distance between the focal paper and the potentially-referencing 

patent. Standard errors are clustered at the level of the simultaneous discovery. 

3. Empirical Results 

A. Replication and Basic Results 

We begin our analysis in Table IV. Before proceeding, we note the non-significance of most control 

variables in Table III (not shown). In particular, we find little correlation between academic prestige—as 

measured by the number of articles appearing in the top 15 scientific journals—and the likelihood of a 

particular paper being referenced. Although it might seem that inventors would be more likely to 

reference papers from more prominent authors and institutions, this does not appear to be the case in our 

sample. To some extent this may reflect our selection of twin papers, which may be generally well-

known; in a broader sample of papers from a wider variety of journals, institutional prestige may play 

more of a role. Author characteristics and journal impact factor are likewise uncorrelated with the 

likelihood of being referenced. For our particular sample it does not appear that authors are strategically 

preferring one twin paper over another due to the status of the paper’s author, journal, or institution.    

In column (1) we replicate prior findings regarding the spatial separation of the focal paper and a 

potentially-referencing patent. Consistent with work on the geographic localization of knowledge 

diffusion, distance is negatively associated with the likelihood of a paper being referenced by a patent. 

That our analysis of simultaneous discoveries yields similar localization dynamics to those seen in prior 

diffusion studies helps to allay concerns that this set of 313 papers might exhibit strongly different 

characteristics than larger samples analyzed previously.  

Table IV about here 

In column (2) of Table IV, we include an indicator of all authors of a focal paper located outside 

“hubs” of relevant commercial R&D. Adding this covariate does not materially affect the estimate of the 

coefficient on the distance control from column (1), but its own coefficient is negative with statistical 

significance at the 1% level. Paper twins located outside of R&D hubs are 9.97% less likely to be 

referenced than their twin(s) located inside R&D hubs. Thus it appears that the deleterious effect of being 

separated from a potential user of academic knowledge can be ameliorated if the knowledge producer is 

collocated with communities of commercial inventors in the same field. To return to our earlier example, 

although we might expect a firm to be less likely to build upon an academic discovery 1,000 miles away 

when an equivalent discovery is only 100 miles away, the more distant discovery may in fact be more 

likely to be referenced if it is within a hub of commercial R&D in that field. 

Following Singh and Marx (2013), in column (3) we switch from parametrically modeling 

distance to a non-parametric series of dummies in order to capture the nuances of localization. Compared 

to an omitted category of more than 2,500 miles separating the patent and paper, a reference is 20.4% 
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more likely to occur when the patent and paper are within 20 miles of each other. This sharp dropoff with 

even a small separation between patent and paper resembles the Belenzon and Schankerman (2013) 

finding that the probability of a paper being referenced by a patent drops by 40% when they are within 25 

miles. The coefficient on location outside an R&D hub is largely unaffected by this change. 

The evaluation of new academic knowledge requires specialized skills, so the effect of being 

located in a R&D hub should therefore only be salient when those hubs are specific to the discovery. As a 

placebo test of the field-specificity of this mechanism, in column (4) we replace our hub definition from 

Appendix IV with a more general measure of biotech clusters as defined by Hoffman and Fucht (2014). 

Although we do not purposefully focus on the life sciences, 14 of the top 15 scientific journals are in this 

area. Replacing our field-specific hub definitions with these broader biotech cluster definitions does not 

yield statistically significant results.  

In column (5) we perform another placebo test. The analyses in Table IV to this point measure 

references to academic papers from patents assigned to firms in order to measure the flow of knowledge 

from academia to industry. If commercial R&D hubs affect only academia-to-industry flows and not 

knowledge diffusion more generally, the geography of commercial R&D should not affect flows within 

academia. For column (5) we construct dyads of paper twins and university-assigned patents, using a 

setup similar to that described in Appendix III. While there is a negative relationship between the 

likelihood of an academic paper being referenced by a university patent and its location outside a hub of 

relevant commercial R&D, the coefficient is very imprecisely estimated. Taken as a whole, Table IV 

indicates that hubs of commercial R&D facilitate the flow of academic knowledge to industry, not within 

academia itself, and only when the hubs are highly specific to the science at hand.  

B. Robustness 

In Table V, we test the robustness of the relationship between an academic paper being referenced by a 

firm-assigned patent when it is located in a hub of relevant R&D. The concentration of twin papers in 

certain cities or at particular institutions, as suggested by Table II, may raise the possibility that our 

finding is driven by a few key locations. Columns 1-3 report one of a series of leave-one-out tests to 

address this concern. Boston, Massachusetts is home to 8.3% of our twin papers, yet the relationship 

between location in a hub and referencing is robust to its omission in column (1). Similar results are also 

recovered when sequentially excluding the next top five cities: San Diego, CA; New York, NY; Bethesda, 

MD; and San Francisco, CA. In column (2), we repeat the leave-one-out test for academic institutions 

with a high percentage of papers. Harvard is host to 4.8% of our 313 twin papers; omitting either it or any 

of five other top institutions yields similar results. Our result also does not depend on any one assignee, as 

shown in column (3): Senomyx Inc. is the most frequent, with 5.4% of patents.  

In column (4) we test our definition of a hub of commercial activity as having at least 5% of 
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patenting activity in that specific field. It is quite unusual to find locations with a fifth or a quarter of 

patenting, so we do not test 20% or 25% thresholds, but when we double the percentage of patenting in 

that field required to 10% we find results are consistent with those obtained at the 5% level.  

Our analyses thus far have focused on the 313 twin papers reporting simultaneous discoveries 

where one (but not all) twins were referenced by a patent, as this provides variation in the dependent 

variable. In the remaining columns of Table V we adopt alternative specification in order to include 

additional twin papers. Unlike the conditional logit, the linear probability set-up in column (5) includes 

the 295 twin papers reporting simultaneous discoveries where all twin papers were referenced by every 

patent that references any of them. Our result is preserved, with approximately a 9% lower probability of 

papers located outside of hubs being referenced by industry patents.  

In column (6) we analyze all 1,196 academic twin papers, including the 588 papers reporting 

simultaneous discoveries where none of the twin papers were referenced by industry patents. Given that 

we cannot construct patent-paper dyads for the 588 papers where no patent references them or their twins, 

instead we adopt just the twin paper as our unit of observation. Our dependent variable also changes to be 

the count of references to a given twin paper from any patent. Correspondingly, we adopt a negative 

binomial specification as indicated by a goodness-of-fit test following Poisson regression. Consistent with 

our prior models, twin papers located outside of relevant hubs of commercial R&D are less likely to 

receive references from industry patents. We do not employ simultaneous-discovery fixed effects in 

column (6) as the 588 papers reporting simultaneous discoveries where no twins were referenced would 

be dropped for lack of variation in the dependent variable. However, re-estimating the count model using 

OLS enables inclusion of the simultaneous-discovery fixed effects and yields similar results (unreported). 

C. Interaction effects and mechanisms 

In Table VI we further explore the mechanisms underlying the attenuation of knowledge flow to industry 

from academics located outside of R&D hubs. Given our hypothesis that locating within commercial 

R&D hubs will facilitate awareness by a larger set of industry inventors, we expect that our results will be 

attenuated by factors that compensate for non-hub location by promoting awareness of the focal paper.  

Our first moderator examines the relationship between the institution and industry. If proximity to 

relevant R&D hubs facilitates the flow of knowledge from academia to industry, then more formal 

relationships between academia and industry may substitute for the informal interactions that may arise 

given proximity to a hub. We explore this interaction in column (1a) by introducing a measure of 

commercial investment in R&D at the institution where a given paper was published. (Given that this data 

is collected from the Association of University Technology Managers, our analysis in column (1a) is 

necessarily limited to North American institutions.) Although the positive coefficient on the interaction of 

this measure and the indicator for being outside of relevant R&D hubs is suggestive of a substitution 
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effect, it is somewhat imprecisely estimated.  In column (1b) of Panel A, we replace the interaction term 

between R&D hubs and commercial investment in R&D at a focal institution with a set of indicators 

interacting whether the paper is outside an R&D hub with four levels of commercial funding of R&D at 

the institution: (1) no funding; (2) funding totaling less than $5MM; (3) more than $5MM but less than 

$22MM, i.e. the 75th percentile; (4) more than $22M. (In column (1b), as well as (2) and (3), the omitted 

category is all papers inside an R&D hub.) The estimated coefficients on the interaction variables suggest 

that the apparent substitution effect in column (1a) is driven primarily by papers written at institutions that 

are outside R&D hubs and which do not receive any commercial funding.  

 Table VI about here  

Given the challenges of interpreting interaction terms in nonlinear models such as conditional 

logit, we repeat this analysis with a linear probability model and graph the resulting coefficients in Figure 

III. Panel A corresponds to column (1b). The only estimated coefficient significantly different from zero 

is for papers outside of relevant R&D hubs which receive no R&D investment dollars from industry. Thus 

it appears that the negative effect of being located outside of R&D hubs is felt most acutely along the 

margin of institutions that lack formal connections to industry. 

Figure III about here 

In Panel B of Table VI, we consider whether institutional reputation or prestige might generate 

exposure for papers located outside of R&D hubs. As noted earlier, academic prestige does not generally 

affect the probability of a twin paper being referenced. However, it might do so for the subset of papers 

published outside of R&D hubs as prestige could compensate for those papers’ lower visibility among 

commercial inventors. We interact the outside-R&D-hub indicator with indicators for the four quartiles of 

institutional prestige and rely again on the graphed linear-probability coefficients for inference. Panel B 

of Figure III suggests that papers whose institutions are in the lowest quartile of prestige are those that are 

the most clearly affected by their location outside of a commercial R&D hub.  

Finally, we examine the interplay between separation from R&D hubs and the distance between 

the paper and the potentially-referencing patent. As in the previous two panels, in Panel C of Table VI we 

add interaction terms for all distance dummies, including for the previously-omitted category of more 

than 2500 miles separating the two. The pattern revealed by the plot of linear-probability coefficients in 

Panel C of Figure III suggests a three-tiered effect of separation from relevant R&D hubs. For paper-

patent dyads within commuting distance of each other (i.e., less than 20 miles, or 20-50 miles), being 

isolated from R&D hubs appears not to have an effect. Given the finding from Table IV that paper-patent 

dyads within 20 miles of each other are much more likely to contain a reference, it appears that the paper 

being outside an R&D hub may not matter if it is close enough to the potentially-citing patent. This is 

consistent with a model in which academic researchers and commercial inventors each have strong 
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internal linkages within their respective communities but weak connections to each other. The resulting 

cross-community gap can apparently be bridged by collocation, either with the inventors on the possibly-

referencing patent, or with the community of inventors in an R&D hub for that specific scientific field. 

By contrast, when the separation between the focal paper and focal patent is more than 2500 

miles, hubs appear to lose their efficacy in facilitating the flow of knowledge from academia to industry. 

One might be concerned that this reflects the influence of bicoastal networks between say, San Diego and 

Boston, which facilitate distant knowledge flow independent of R&D hubs. However, only 18.5% of 

paper-patent dyads separated by more than 2500 miles are within the U.S., while all but one of the non-

U.S. dyads with similarly large separation are on different continents. Both for the intercontinental and 

within-U.S. dyads separated by more than 2500 miles, the fraction of papers referenced by a focal patent 

is lower than for dyads separated by fewer than 2500 miles. Thus it appears that there are limits to the 

ability of hubs to facilitate the flow of knowledge across continents.  

In sum, the analyses of Table VI and Figure III suggest that papers located outside hubs of 

relevant R&D are most disadvantaged when their institutions lack formal connections with industry, 

when the institution has low prestige, and when the paper and potentially-citing patent are neither within 

commuting distance nor extremely separated.  

One possible mechanism includes linkages between the inventor on a focal patent and those 

inventors in the commercial hubs of R&D that a focal paper is near. If inventors in those hubs become 

aware of nearby academic discoveries through local interactions with academic scientists, awareness of 

those discoveries may flow more broadly within industry via social networks. As described in Appendix 

V, we calculate the network overlap between the hub(s) associated with a particular paper and the 

inventors of a possibly-referencing patent. In unreported results, a patent is considerably more likely to 

reference a paper if there exists network overlap between itself and the inventors in the paper’s hub(s), if 

any. However, such overlap does not strongly mediate the effect of hubs. This could be either because 

networks play only a small role in the flow of academic science to industry, or because the networks 

observable to us represent a small subset of interpersonal interactions along which such flows occur. 

4. Discussion 

This paper proposes a methodology to identify the impact of the geographic location of academic 

institutions on the flow of scientific knowledge to industry. We use simultaneous discoveries—i.e., events 

in which multiple teams of scientists share credit for a discovery to identify a new factor underlying how 

the location of academic research institutions impacts the flow of scientific knowledge to firms. As 

corporate inventors attempt to keep track of the newest academic findings, they not only privilege local 

discoveries but are also particularly exposed to knowledge produced in the relevant hubs of commercial 

R&D. This effect is attenuated when the inventors on a focal patent becomes exposed to the paper by 
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other means including the prestige of the academic institution, its formal connections to industry, or its 

collocation with those same inventors.  

We interpret our results cautiously, for several reasons. Even though simultaneous discoveries 

allow us to examine the same knowledge emerging at different locations, the non-referencing of an 

academic paper in a corporate patent is not a perfect measure of the absence of knowledge flow since 

those discoveries could conceivably diffuse in ways that do show up in the patent process. In addition, our 

set of twin papers is relatively small and largely concentrated in the life sciences (albeit not by design), 

limiting generalizability to other industries. Although we do not observe period effects in our data, it is 

possible that in a broader set of simultaneous discoveries additional heterogeneity may emerge (perhaps 

also with regard to prominence of the journal, author, or institution).  

Despite these limitations, our findings raise a number of questions. First, the current distribution 

of academic research organization might promote equal access to science across geographical areas, but 

our results suggest that such efforts toward egalitarianism may come at a cost by complicating firms’ 

exploitation of discoveries made at remote academic institutions. This raises something of a dilemma for 

science policy. Should policy-makers abstain from funding academic research conducted outside of the 

relevant R&D hubs, or should they instead promote the dissemination of scientific knowledge produced at 

those institutions? Similarly, what are the steps that those institutions may take to offset their inherent 

disadvantage due to location? Finally, are the careers of the scientists who accept positions at those 

institutions negatively affected by their reduced ability to have an impact beyond academia? 

Firms may also be able to take advantage of the fact that valuable scientific discoveries emerging 

from institutions located outside R&D hubs tend to be ignored. Not only might broadening technological 

search reveal otherwise-missed opportunities; less competition for such discoveries at institutions 

collocated with neither the focal firm nor hubs of commercial R&D might yield attractive licensing terms. 

Our analysis points to the importance of uncovering the costs and benefits of the organization of 

academic science. Most empirical studies of this question use large-scale citation analysis with a 

difference-in-difference approach (Murray and Stern 2007; Agrawal and Goldfarb 2008; Furman and 

Stern 2011). Exogenous shocks, however, are not available for every important question. This paper 

attempts to enrich the "empiricist's toolbox" by describing a new approach exploiting the occurrence of 

simultaneous discoveries in science.  Our hope is that this study will contribute to a better understanding 

of academic science as an institution both by offering theoretical insights about the impact of academic 

location and by establishing the value of simultaneous discoveries as a research methodology.   
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Appendix I: 

Cross-sectional Analysis 

A naïve approach to estimate the association between the geographic location of academic research 

institutions and knowledge flow to industry would be to consider references in corporate patents to a large 

sample of academic publications. We examined all 28,133 academic papers published in the top 15 

scientific journals between 2000 and 2010. These are Nature, Science, Cell, the New England Journal of 

Medicine, Journal of the American Medical Association, Lancet, CA: Cancer Journal for Clinicians, 

Nature Genetics, Nature Materials, Nature Medicine, Nature Immunology, Nature Nanotechnology, 

Nature Biotechnology, Cancer Cell, and Cancer Stem Cell. 

To determine whether these academic papers are located outside “hubs” of relevant industrial 

R&D, as detailed in Appendix IV we need to know which USPTO patent subclasses are relevant to the 

focal paper, 6 which are available only for papers that receive one or more references from patents as 

described in Appendix III. Hence, this analysis is conditional on having received a reference from a patent 

assigned either to a university or a firm. There are 1,649 such papers among the 28,133, or 5.9%.  

For those papers, we are able to assess whether they emerged in a relevant corporate R&D hub by 

observing the distribution of corporate patents from the relevant subfield in the 5 years surrounding the 

publication of the paper. To assess knowledge flow to industry, we count how many times those 1,649 

publications are referenced by patents assigned to firms (not universities). A simple difference-of-means 

test indicates that the average number of references for such papers located outside relevant hubs of 

industry R&D is 1.7 as compared with 3.2 for papers located inside a hub of relevant commercial R&D, 

with statistical significance at the 0.01% level. Similar results are recovered in unreported regression 

models that incorporate the controls from Table I.  

   

  

                                                      

6 In defining hubs for cross-sectional analysis, we face the following tradeoff: since we cannot 

establish the field of a publication that is not referenced in any patent, we can either define corporate hubs 

broadly by building a measure that depends on corporate patent density but is not field specific or we can 

sacrifice sample size and focus instead on those academic publications that receive at least one patent 

reference. Both approaches lead to the result that academic publications emerging inside corporate R&D 

hubs receive significantly more patent references.  
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Appendix II: 

An Automated Method to Build a List of Simultaneous Discoveries  
The algorithm is rooted in the results from two distinct literatures. On the one hand, sociologists of 

science have found that citations provide a window into the scientific community’s allocation of credit. In 

a sense, the community uses citations as a “vote” regarding which team deserves the credit for a given 

discovery (Cozzens 1989). As a result, systematic co-citation in the scientific literature indicates that the 

community has decided that the credit for a specific discovery ought to be shared across different teams. 

While occasional co-citation might point to discoveries that are complementary rather than simultaneous, 

systematic co-citation indicates that two of more papers share the credit for the same discovery. On the 

other hand, citations provide a convenient similarity metric to relate documents (Marshakova 1973; Small 

1973). As such, they can be used to map science, but can also be fed into search engines pointing to 

related papers. As an example, as CiteSeer uses co-citations to compute the relatedness between academic 

papers (Giles, Bollacker, and Lawrence 1998). Recent studies have suggested that these algorithms can be 

made even more precise by considering citation proximity within each paper. For instance, papers that are 

co-cited in the same sentence tend to be particularly similar to each other (Gipp and Beel 2009; Tran et al. 

2009). The algorithm that was used here goes one step further and considers pairs of scientific 

publications that are consistently cited together—i.e., in the same parenthesis, or adjacently. 

In practice, the algorithm uses five steps. In step 1, a dataset consisting of information about 

42,106 scientific articles was built using ISI Web of Knowledge. It is composed of all the non-review 

research publications that appeared in the 15 scientific journals having the highest impact factor between 

2000 and 2010.   In step 2, each reference in all of these articles were given a unique identifier using 

Pubmed and CrossRef. Of 1,294,357 references, 744,583 unique references were identified. Step 3 

generates a database of pairs of all references that were (a) co-cited at least once, (b) written no more than 

a calendar year apart, (c) have no overlapping authors, (d) in which at least 5 citations for each reference 

are observed in the dataset of 42,106 citing articles. Of the 17,050,914 pairs of papers that were 

considered, 449,417 pairs meet these criteria. Step 4, consists in establishing a first measure of co-

citation. A Jaccard co-citation coefficient was used following the scientometric literature. It consists in the 

intersection over the union of citations that both papers receive for each pair. 2,320 pairs of papers were 

selected that had a co-citation coefficient superior to 50%. Finally, step 5 consists in selecting those pairs 

for which 100% of the co-citations took place in the same parenthesis or adjacently. To do so, a parsing 

algorithm examined all the co-citing articles. 495 pairs for which fewer than 3 co-citing articles could be 

parsed were excluded. Of the remaining 1,825 pairs, 720 had been cited adjacently in 100% of the co-

citing articles. These 720 pairings of 1,246 papers disclose 578 unique discoveries since there are 

instances of discoveries involving three or more teams.   
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The extent to which the resulting pairs are actually instances of simultaneous discoveries was 

tested in several ways.  First, if they really are twins, our pairs of scientific papers should be published 

around the same time. The algorithm matches on co-citation and not on publication month. If two alleged 

paper twins were not really disclosing the same discovery, one would expect them to be on average six 

months apart or more.7  The 720 paper twins in the entire dataset were in fact published on average 1.8 

months apart, a lag considerably shorter than the average time between paper submission and publication. 

In fact, 373 pairs of twins were published the exact same month, and 267 of them were published in the 

same issue of the same journal. Second, the Pubmed related citation algorithm uses semantic similarity to 

match scientific papers. Since the large majority of the 1,246 papers also appear in Pubmed, we can use 

this algorithm to measure the semantic similarity between pairs of papers that our algorithm identified as 

disclosing the same discovery. If the pairs were not very closely related, they should not be using the 

same words and should therefore be ranked far from each other. Pubmed ranks two papers of the same 

pair right next to each other 42% of the time. The rank difference is inferior to 10 for 90% of the pairs. 

Third, 27 scientists who had been corresponding authors on at least one of the 1,246 papers were 

interviewed. Importantly, none of them contested the fact that they were sharing the credit with another 

team for the same discovery and some were bitter about it.8 Five of the interviewees claimed that their 

idea had been stolen by the other team. Confirming that the algorithm uses very conservative criteria, the 

interviewees also revealed in several cases that more teams than we were aware of had claimed to have 

taken part in the simultaneous discovery. One should keep in mind that, by design, our algorithm excludes 

any priority claim that is not clearly visible through the citations of the broader scientific community.  

                                                      

7 The algorithm does not match on month, but it limits the consideration set of papers to pairs that 

were published no more than a calendar year apart (we considered that papers published more than 23 

months apart cannot be disclosing the same discovery). This choice is limiting because many independent 

discoveries are known to have taken place years apart of each other (see Ogburn and Thomas (1922) for 

numerous examples). However, since credit for scientific discoveries is a function of priority, it is 

reassuring that we ended up with pairs of papers published very close to each other. Besides, for our 

study, it is important that the paper emerge around the same time so they have the same chance of being 

used by corporate inventors. 

8 Sharing the credit does not mean that the two (or more) papers were identical. Two scientific 

articles written by two different teams are never completely identical, and differences might exist in the 

tools/methods used, in the number of experiments, or in the interpretation of the results. However, the fact 

that the papers share the credit indicates that the scientific community considers that both teams provided 

convincing evidence to support their claim of priority in making the discovery.  
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Appendix III: 

Capturing References from Patents to Papers  
Tracking references to papers is more difficult than references to patents. As seen in Figure A.1, papers 

are listed as free-text strings. One might match on title and journal name but from our initial attempts to 

do so we found frequent abbreviations of title and journal names as well as occasional misspellings.  

Instead, we elected to use four more reliably matched criteria: 1) the surname of the first author, 

2) the year of article publication, 3) the volume number of journal, and 4) the starting page number. This 

tuple is highly unlikely to be non-unique; in order for this to occur, two authors with the same surname 

would have had to publish articles in different journals that had the same volume number in the same 

year; moreover both articles would have to start on the same page. 

We automatically parse the first author’s name, year, volume, and first page from the scientific 

references listed in the patent. These fields are also extracted from the scientific papers, for which this 

data is available in a more structured format. The two groups of {author surname, year of journal, journal 

volume, initial page number} characteristics are matched with each other. We use the matches produced 

from these four criteria as a first pass to create a superset of possible matches and then inspect those by 

hand for Type II errors (less than 2% of automated matches were dropped as false positives). 

Figure A.1: References to Patents vs. Papers 

 
Notes: The paper and patent above illustrate the process of finding scientific references. Instead of attempting to 

match on title or journal name, only the first author’s name, year, volume number, and initial page number are used. 

In some patents referencing this article, the journal name is abbreviated in various ways (Nat. Genet.; Nature 

Genets.; etc.). In others, the article title is omitted, such as in patent 6,287,854 where the reference appears as Steck 

et al (Apr. 1997) Nature Genetics 15, 356-362.  
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 Appendix IV:  

Constructing “Hubs” of Commercial R&D in Specific Fields 
This measure is operationalized as follows. We start by collecting the technological subclassifications 

from all patents, whether industry or academic, that contain references to one of the 313 “twin” papers in 

order to have the most complete possible representation of USPTO patent subclasses that are applicable to 

the discovery. Patents referencing papers that report the simultaneous discoveries are categorized into 712 

unique subclasses. For each subclass, we then collect all non-university patents belonging to that subclass, 

whether or not they reference any of the twins in our study. We find a total of 1,430,822 corporate patents 

that were categorized by the USPTO into one of the 712 technology subclasses. 

We then construct “hubs” of commercial R&D activity as follows. For each of the 712 

technology subclasses that characterize our simultaneous discoveries, we collect the locations in which 

those non-university patents are found in that subclass. For each location, we count the number of patents 

in that same subclass within a 50-mile radius for each half-decade. We divide those two figures to yield 

the percentage of overall patenting activity from that technology subclass occurring in that location.  We 

label a location as a “hub” of R&D for that subclass if more than 5% of patents in that technology 

subclass are located within a 50-mile radius. Because this threshold can easily be exceeded in technology 

subclasses with few patents (e.g., in a subclass with only 20 patents, every location has at least 5% of 

patenting), we require that a location have at least five patents in that subclass to qualify as a “hub.” This 

exercise yields a list of R&D hubs for each of the 712 technology subclasses relevant to our simultaneous 

discoveries within five years of the publication date. (Some subclasses are widely distributed across 

locations and thus do not have any hubs.) 

To determine whether a given academic paper is inside or outside of a relevant hub of industrial 

R&D, we first make a list of the technological subclasses for all patents that referenced either the focal 

paper or any of its twins. These patent subclasses delimit the relevant scope of R&D activity for that 

simultaneous discovery. For each twin paper reporting that simultaneous discovery, we then check 

whether there is at least one R&D hub within 50 miles (i.e., commuting distance) of the institutional 

affiliation of any author on the paper. It is important to note that location with regard to relevant R&D 

hubs is a paper-level attribute, neither an institution- nor city-level attribute. Institutions and cities may be 

inside a hub for one field but outside of R&D hubs for others. For example, in the 1995-1999 period, 

Dallas is not considered a biotechnology R&D hub but it is a hub for semiconductor R&D; the opposite is 

true for Boston. It is also possible that the concentration of R&D shifts over time, which motivates our 

use of five-year windows for determining hubs.   
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Appendix V: 

Mapping network overlap between a focal patent and paper hubs 

Our objective is to detect interpersonal linkages between a focal patent and a focal paper via which 

information regarding the paper might flow to the owner of a patent. Of course, a full inventory of all 

such interactions is unobservable, and mapping networks across domains (i.e., from academia to industry) 

is nontrivial. As a proxy, we utilize information regarding patent inventors to construct second-degree 

network connections. For each inventor on any patent in our dataset, we assemble the list of that 

inventor’s co-inventors on that or any other patent (i.e., that inventor’s first-degree connections). We then 

find the list of the co-inventors for that inventor’s co-inventors (i.e., that inventor’s second-degree 

connections). 

Our initial approach is to detect first- or second-degree overlap between the corresponding author 

of the academic paper and the inventors of the patent. As approximately one-fourth of the authors of the 

313 twin papers in our sample ever filed a patent, by definition this mapping is limited to those authors. 

For a given author of a paper (who has at least one patent) and a potentially-citing patent, we check 

whether any of the author’s first-or-second-degree connections is also a first-or-second-degree connection 

of any of the inventors on the focal patent. For the approximately one-quarter of paper authors who have a 

patent, we find zero instances of overlap between the paper’s author and the inventors on the focal, 

possibly-referencing patent in the dyad. Note that this does not mean there is no network overlap, only 

that we cannot detect such using patent records. Directly mapping the names of paper authors as well as 

their collaborators, students, advisors, etc. to patent holders’ names may further illuminate the nature of 

these network connections. 

Our second approach is to locate connections between the inventors on a focal patent and the 

inventors in relevant hubs of commercial R&D for a given paper. Again, such hubs may facilitate the 

flow of information from academia to industry when inventors in those hubs are linked to the inventors of 

potentially-citing patents. For each academic paper located inside one or more hubs, we gather the 

inventors of all commercial patents defining the hub and then assemble their first- and second-degree co-

inventors. We then check for overlap between these connections and those of the inventors on a focal 

patent that might reference the focal paper. 

Using this second method, we find that 9% of paper-patent observations where the paper is inside 

a hub of commercial R&D contain a network overlap between the inventors on the focal patent and the 

inventors in the hub. Again, we do not claim to have captured all network overlap but only that which is 

detectable using patent data. Some paper-patent combinations have up to nine overlapping first-and-

second-degree connections between the focal patent and the patents in the hub.  
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Table I 

Summary statistics for twin academic papers reporting simultaneous discoveries. N=1,196. 

   
Notes: The construction of “twin” papers reporting simultaneous discoveries is detailed in Appendix II. 

Mean Median Std. Dev. Min. Max.

Number of patents referencing twin paper 0.000 0 0.000 0 0

Journal impact factor 3.003 3.280 0.630 0 3.959

Paper located in U.S. 0.581 1 0.494 0 1

Paper was patented 0.102 0 0.303 0 1

Corresponding author stock of patents 0.995 0 3.622 0 55

Corresponding author stock of papers 73.997 41 87.133 0 754

Institution's 5-year stock of patents 185.688 35 341.872 0 2308

Institutional prestige 95.802 30 147.989 0 577

Number of patents referencing twin paper 2.692 1 5.009 0 38

Paper authors outside hubs of relevant R&D 0.902 1 0.298 0 1

Journal impact factor 3.023 3.467 0.666 0 3.959

Paper located in U.S. 0.651 1 0.478 0 1

Paper was patented 0.149 0 0.357 0 1

Corresponding author stock of patents 1.312 0 3.935 0 41

Corresponding author stock of papers 73.634 40 89.547 0 679

Institution's 5-year stock of patents 153.264 60 239.953 0 1606

Institutional prestige 99.853 42 129.426 0 577

Number of patents referencing twin paper 8.518 5 12.034 0 81

Paper authors outside hubs of relevant R&D 0.799 1 0.402 0 1

Journal impact factor 3.062 3.467 0.632 0 3.959

Paper located in U.S. 0.645 1 0.479 0 1

Paper was patented 0.214 0 0.411 0 1

Corresponding author stock of patents 1.652 0 5.437 0 75

Corresponding author stock of papers 76.047 44 93.427 0 447

Institution's 5-year stock of patents 144.336 63 221.796 0 1415

Institutional prestige 101.667 38 141.625 0 577

 Academic "twin" 

papers from 

simultaneous 

discoveries where 

no  paper was 

referenced 

(N=588)

 Academic "twin" 

papers from 

simultaneous 

discoveries where 

every twin was 

referenced 

(N=295)

Academic "twin" 

papers from 

simultaneous 

discoveries where 

one but not all 

twins were 

referenced 

(N=313)
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Table II 

Location of 313 academic “twin” papers where one but not all twins are referenced 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Notes: “Twin” papers report the same simultaneous academic discovery as described in Appendix II. The subset of 313 twin papers here are limited 

to simultaneous discoveries where one but not all twins was referenced by a firm-assigned patent. 

  

Freq. Percent Cum. Freq. Percent Cum.

Harvard University 15 4.79 4.79 Boston, MA 26 8.31 8.31

UT Southwestern Medical Ctr 11 3.51 8.31 New York, NY 23 7.35 15.65

UC San Francisco 9 2.88 11.18 San Diego, CA 13 4.15 19.81

Columbia University 8 2.56 13.74 Bethesda, MD 10 3.19 23

Johns Hopkins University 8 2.56 16.29 San Francisco, CA 9 2.88 25.88

MIT 8 2.56 18.85 Baltimore, MD 8 2.56 28.43

Salk Institute 7 2.24 21.09 Cambridge, MA 8 2.56 30.99

Rockefeller University 7 2.24 23.32 Dallas, TX 8 2.56 33.55

University of Toronto 6 1.92 25.24 London, UK 7 2.24 35.78

Yale University 6 1.92 27.16 New Haven, CT 7 2.24 38.02

UC San Diego 5 1.6 28.75 Toronto, Canada 7 2.24 40.26

Oxford University 5 1.6 30.35 Cambridge, UK 6 1.92 42.17

European Molecular Biology Lab 4 1.28 31.63 Heidelberg, Germany 5 1.6 43.77

London Research Institute 4 1.28 32.91 Houston, TX 5 1.6 45.37

Massachusetts Gen. Hospital 4 1.28 34.19 Oxford, UK 5 1.6 46.96

RIKEN 4 1.28 35.46 Philadelphia, PA 5 1.6 48.56

Cambridge University 4 1.28 36.74 Seattle, WA 5 1.6 50.16

Duke University 4 1.28 38.02 Chapel Hill, NC 4 1.28 51.44

University of North Carolina 4 1.28 39.3 Chicago, IL 4 1.28 52.72

New York University 4 1.28 40.58 Durham, NC 4 1.28 53.99

Stanford University 4 1.28 41.85 Los Angeles, CA 4 1.28 55.27

University of Washington 4 1.28 43.13 Palo Alto, CA 4 1.28 56.55

Panel A

Institutions with four or more "twin" academic papers

Panel B

Cities with four or more "twin" academic papers
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Table III 

Summary statistics and correlations for paper-patent dyads (N=1,638)   

 
Notes: Observations are constructed for all combinations of twin academic papers and patents where one but not all 

twin academic papers reporting a simultaneous discovery is referenced by a firm-assigned patent.  

  

Mean Median Std. Dev Min Max

Twin paper referenced by focal patent 0.477 0 0.5 0 1

Paper authors outside hubs of relevant R&D 0.667 1 0.472 0 1

Paper outside biotech clusters 0.524 1 0.5 0 1

Journal impact factor 3.202 3.51 0.581 0 3.959

Paper located in U.S. 0.664 1 0.472 0 1

Paper was patented 0.24 0 0.427 0 1

Corresponding author stock of patents 0.439 0 0.738 0 4.331

Corresponding author stock of papers 3.577 3.688 1.326 0 6.463

Institution's 5-year stock of patents 3.181 4.04 2.314 0 7.256

Institutional prestige 3.36 3.82 2.011 0 6.36

Publication lag, paper vs. patent 5.142 4 3.236 0 17

Distance between paper and patent 7.167 7.747 1.952 0 9.263

Paper and patent in same state 0.096 0 0.294 0 1

Paper and patent in same country 0.51 1 0.5 0 1
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Table IV 

The impact of the location of academic institutions on discoveries being referenced by industry patents 

Notes: Observations are academic-paper/firm-assigned-patent dyads. All models are estimated using conditional logit and include simultaneous-discovery/patent 

fixed effects. All models include controls for the paper (U.S.-based, journal impact factor, discovery was patented), author (stock of patents and papers), and 

institution (stock of patents and papers) characteristics as well as characteristics of the paper-patent dyad (publication lag). Papers outside hubs of relevant R&D 

are 9.97% less likely to be referenced. Standard errors are clustered at the level of the simultaneous discovery; *** p<0.01; ** p<0.1; * p<.0.05; + p<0.10.   

university

(1) (2) (3) (4) (5)

Paper authors outside hubs of relevant R&D -0.767** -0.791** -0.380

(0.297) (0.289) (0.287)

Paper outside biotech clusters -0.291

(0.294)

Distance between paper and patent -0.182* -0.187**

(0.0709) (0.0709)

Paper and patent <20 miles apart 1.851* 1.398+ -0.923

(0.798) (0.785) (1.038)

Paper and patent 20-50 miles apart 0.452 0.103 -0.654

(0.775) (0.784) (1.042)

Paper and patent 50-250 miles apart 0.872 0.498 -0.480

(0.651) (0.682) (0.404)

Paper and patent 250-1000 miles apart 0.731+ 0.662+ -1.122***

(0.385) (0.388) (0.335)

Paper and patent 1000-2500 miles apart 0.348 0.300 -0.874*

(0.343) (0.348) (0.359)

Paper and patent in same state -0.380 0.0311 -0.00643

(0.493) (0.489) (0.746)

Paper and patent in same country -0.237 -0.0690 1.724**

(0.573) (0.579) (0.546)

Observations 1,638 1,638 1,638 1,638 1,071

# twin articles 313 313 313 313 378

Pseudo-R2 0.122 0.143 0.147 0.133 0.0946

Log-likelihood -503.3 -491.8 -489.1 -497.2 -339.1

Simultaneous-discovery/patent FE YES YES YES YES YES

firm

Dependent variable indicates that the "twin" paper was referenced by a patent assigned to a
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Table V 

Robustness checks 

 
Notes: For columns (1-5), observations are academic-paper/firm-assigned-patent dyads; the dependent variable indicates whether the patent in the dyad 

references the paper. Column (5) employs a linear probability model, which enables estimating the model using the 295 twin papers where every patent 

referencing one twin also referenced all other twins. In column (6), observations are all 1,196 academic twin papers; the dependent variable counts the number 

of patents referencing a focal paper. (Overdispersion indicates a negative binomial.) All models include controls for characteristics of the paper (U.S.-based, 

journal impact factor, discovery was patented), author (stock of patents and papers), and institution (stock of patents and papers). Columns (1-5) also control for 

characteristics of the paper-patent dyad (publication lag; spatial distance). Standard errors are clustered throughout at the level of the simultaneous discovery; 

*** p<0.01; ** p<0.1; * p<.0.05; + p<0.10.  

  

linear probability negative binomial

omit top city omit top 

institution

omit top 

assignee

(1) (2) (3) (4) (5) (6)

Paper authors outside hubs of relevant R&D -0.818* -0.705* -0.893** -1.027* -0.0870* -1.564***

(0.393) (0.303) (0.295) (0.454) (0.0356) -0.175

Constant -0.133 1.523***

(0.326) (0.0580)

Observations 1,182 1,371 1,565 1,638 5,138 1,196

# twin articles 252 286 311 313 608 1,196

(Pseudo) R-squared 0.137 0.107 0.178 0.146 0.038 0.0291

Log-likelihood -450.7 -487.3 -489.9 -357.3

Simultaneous-discovery/patent FE YES YES YES YES YES NO

leave-one out tests

conditional logit

10% hub 

threshold 
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Table VI 

Interaction effects 

 
Notes: Observations are academic-paper/firm-assigned-patent dyads. The dependent variable indicates whether the patent in the dyad references the paper. All 

models are estimated using simultaneous-discovery/patent fixed effects. All models include controls for the paper (U.S.-based, journal impact factor, discovery 

was patented), author (stock of patents and papers), and institution (stock of patents and papers) characteristics as well as characteristics of the paper-patent dyad 

(publication lag; spatial distance). Base variables for interactions are not shown. The omitted category for the interactions consists of papers that were located 

inside hubs of commercial R&D in the same scientific field as the discovery. Panel A uses data from North America only due to the scope of the Association for 

University Technology Managers. Standard errors are clustered at the level of the simultaneous discovery; *** p<0.01; ** p<0.1; * p<.0.05; + p<0.10. 

 

 

  

(1a) (1b) (2) (3)

Paper authors outside hub of relevant R&D -1.290**

(0.449)

Industry $ funding research at institution -0.0336+ -0.662

(0.0184) (0.564)

Outside hubs * industry $ funding institution 0.0296+ 0.0630 Outside hubs, lowest quartile -1.925** Outside hubs, within 20m -0.516

(0.0170) (1.507) (0.646) (1.146)

Outside hubs, no industry funding -2.408** Outside hubs, second-lowest quartile -0.726 Outside hubs, 20-50m -0.449

(0.808) (0.745) (1.565)

Outside hubs, little industry funding -1.421 Outside hubs, second-highest quartile -1.032* Outside hubs, 50-250m -1.972+

(1.462) (0.445) (1.111)

Outside hubs, more industry funding -0.866+ Outside hubs, highest quartile -0.622 Outside hubs, 250-1000m -2.372**

(0.482) (0.401) (0.805)

Outside hubs, most industry funding -0.455 Outside hubs, 1000-2500m -1.691**

(1.067) (0.626)

Outside hubs, >2500m -0.173

(0.341)

Observations 874 874 1,638 1,638

#  twin articles 162 162 313 313

Pseudo-R2 0.204 0.242 0.164 0.173

Log-likelihood -242.8 -231.1 -479.4 -474.3

Simultaneous-discovery/patent FE YES YES YES YES

Panel A Panel B Panel C

Industry investment in the focal institution Institutional prestige Distance between focal paper and patent
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Figure I 

Example of “twin” papers reporting a simultaneous discovery 
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Figure II 

Construction of paper-patent dyads 

 

 
 
Notes: The figure depicts two “twin” papers reporting a simultaneous scientific discovery. Three 

patents reference one or both of the papers, as represented by solid arrows. Each of these realized 

patent-to-paper references constitutes an observation. In addition, dotted lines represent possible but 

unrealized patent-to-paper references in that the other “twin” paper reporting the same simultaneous 

discovery could reasonably have been referenced by the same patent. Note that the patent referencing 

both twin papers is dimmed as the two observations represented by its solid arrows provided no 

variation in the dependent variable and are thus excluded from our conditional logit estimation. 

However, results are robust to a linear-probability specification which includes the dimmed 

observations. 
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Figure III 

Interaction effects for papers outside of relevant R&D hubs with other factors. 
   

Panel A: Funding of R&D at the paper’s institution by industry 

 
 

Panel B: Organizational prestige, defined as # of papers in the top 15 scientific journals 

  
 

Panel C: Distance between paper and patent 

   
Notes: Coefficients are plotted from linear probability models with the identical setup as Table VI.  

Outside hubs, no industry funding

Outside hubs, little industry funding

Outside hubs, more industry funding

Outside hubs, most industry funding

-4 -2 0 2

Outside hubs, lowest quartile prestige

Outside hubs, second-lowest quartile prestige

Outside hubs, second-highest quartile prestige

Outside hubs, highest quartile prestige

-1 -.5 0 .5

Outside hubs, within 20 miles of patent

Outside hubs, 20-50 miles from patent

Outside hubs, 50-250 miles from patent

Outside hubs, 250-1000 miles from patent

Outside hubs, 1000-2500 miles from patent

Outside hubs, more than 2500 miles from patent

-1.5 -1 -.5 0 .5 1


