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Abstract

As university involvement in technology transfer and entrepreneurship has increased, concerns over the
patenting and licensing of scientific discoveries have grown. This paper examines the effect of licensing
on the citation of academic publications associated with patents covering university scientific research.
We analyze data on invention disclosures, patents, and licenses from the University of California, a
leading US academic patenter and licensor, between 1997 and 2007. We also develop a novel “inventor–
based” maximum–likelihood matching technique to automate and generalize Murray’s (2002) patent–
paper “pairs” methodology. We use this methodology to identify the scientific publications associated
with University of California patents and licenses.

We find that, in general, licenses are associated with an increase in journal citations to related
scientific publications. The timing of this effect supports earlier research that suggests that academic
licenses may act as positive signals of research potential in the licensed technological area (Drivas et al.
2014). In contrast, we find the opposite effect of licensing on citations to related scientific publications
when the underlying discovery is a research input (which we identify through the use of material transfer
agreements (MTAs)). In these cases, the related scientific publications experience a significant decline in
citations following the execution of the license.

Our results suggest that, in general, licensing of academic patents does not limit scientific communi-
cation linked to patented academic research. Our findings on the effects of licenses on research inputs,
however, raise the possibility that licensing may restrict the flow of inputs to further scientific research
among researchers.
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1 Introduction

Growth in patenting of academic research advances in U.S. and other universities within the OECD has

triggered considerable debate since at least 1980, the year of passage of the Bayh–Dole Act in the United

States. Supporters argue that patenting and licensing of university inventions can speed the transfer of

scientific discoveries to the private sector, promoting the commercialization of such advances. On the other

hand, detractors predict a collision between the norms of science and the norms of commerce, fearing that the

exclusionary effects of patents will limit research and slow the progress of science. Despite the importance of

this question, there has been relatively little empirical work on the extent to which the patenting of academic

research results affects scientific research progress. The modest volume of such research (e.g., Murray and

Stern (2007)) reflects the challenge of obtaining data that can be used to empirically examine such effects.

This paper develops a new approach to matching scientific publications and patents, which is used to

examine the effect of licensing on the journal citations to related publications. We interpret increased

citations to these scientific publications after a license issues as evidence that licensing is correlated with a

positive effect on the prominence and use by other scientists of the knowledge embodied in the paper, while

decreases in such citations may indicate the presence of greater restrictions to such use. Drawing on related

work by Walsh et al. (2007), we also examine the effect of licenses on related scientific publications covering

the inputs to the experiments of other researchers, a class often referred to as “research tools.”

The next section of this paper discusses the use and potential effects on scientific research of formal intel-

lectual property rights covering academic discoveries. We describe our data and its relevance to this question

in Section 3. We then turn to explaining our methodology for constructing publication–patent matches, as

well as how we construct a plausible counterfactual for our treatment observations in our methodology (Sec-

tion 4). We present the results of our analysis (Section 5). Finally, we discuss the implications of our results

and conclude with a summary of the contributions and limitations of this paper in Section 6.

2 Research and Intellectual Property in Academia

Universities have long been important performers of research, particularly basic research, in the United

States and other industrial economies. The share of U.S. basic research performed by universities has risen

in recent years according to the National Science Foundation’s Science and Engineering Indicators (National

Science Foundation 2012; Table 4-4).

*** Figure 1 Here ***
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At least since the 1970s, this expanded role of U.S. universities in research performance has been paralleled

by growth in patenting and licensing of university discoveries, particularly in biotechnology. Figure 2 shows

the growth in academia’s share of U.S. patents since 1969.1

*** Figure 2 Here ***

The roles of universities as sources of basic knowledge and as sources of potentially valuable ingredients

for commercial innovation raises the possibility of conflict between these roles, with detrimental consequences

for the advance of scientific research. Do patents and licenses restrict access to such knowledge? Or is the

existence of a patent and/or license for that patent a signal of the quality of scientific work that leads to

greater exploration of the area?

Our examination of the effects of patenting and licensing on scientific communication focuses on “patented

publications.” These are discoveries that are published in scientific journals and become the subject of

successful patent applications. A patented publication, therefore, is a scientific publication whose discovery

is also covered by a patent. Although our patented publications are similar to the patent–paper pairs of

Murray (2002) and Murray and Stern (2007), we allow multiple papers to match each patent and thus our

observations are not necessarily “pairs.”2

2.1 The Effects of Intellectual Property Protection and Licensing on Scientific

Research and Communication

An array of factors, including the Bayh–Dole Act of 1980, other changes in U.S. intellectual property laws

and policies, and expanded federal support for academic biomedical research, has increased the patenting

of academic research by U.S. universities. The growth in such patenting has been the subject of a large

literature and considerable debate over its effects on the scientific research enterprise (e.g., Mowery et al.

(2004)).

Heller and Eisenberg (1998) argue that expanded patenting of academic research results may result in

fragmented and overlapping property rights covering upstream biomedical research, limiting the ability of

scientists to access patented and licensed research results for follow–on research. Other scholars raising

concerns over the expanded assertion of property rights in science include Nelson (2003) and David (2003).

Empirical research seeking to assess the effects of patenting on scientific communication has examined the

effects of patenting on biomedical researchers’ willingness to share information on their work (Blumenthal,

et al., 1997; Campbell, et al., 2002). More recent research has analyzed the effects of patenting biomedical
1USPTO (2012).
2We discuss the construction of our sample of “patented publications” in Section 4.
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discoveries that are also disclosed in scientific papers. Some of this work finds that the issuance of a patent

results in modest but significant declines in citations to the research papers related to the patent (Murray

and Stern 2007, Sampat 2005). Other research, however, argues that biomedical researchers rarely if ever

search to determine whether a prospective research project or experiment will infringe on patents (Walsh,

et al., 2005; Lei, et al., 2009), raising a question about the mechanism for any observed citation decreases.

Empirical research on the effects of academia’s use of intellectual property has focused mainly on patenting

of academic research results. The effects of university licensing on scientific research has received much

less attention from scholars. Unlike patents, licenses are not published or otherwise subject to mandatory

disclosure. In many cases the identity of licensees is treated by university technology transfer offices as

confidential (Ziedonis 2007).

Why and how might licenses affect the behavior of academic researchers in formulating their research

agenda? Sampat and Ziedonis (2005) examined patent citations to Columbia University and University of

California patents that were licensed. They found that citations were associated with an increase in the

likelihood that a patent would be licensed. Moreover, most citations occurred after the patent was licensed.

These scholars interpret this pattern as indicating market interest in the technological area surrounding

the licensed patents. More recently, Drivas et al. (2014) found that citations by non–licensees to patents

exclusively licensed (either by geographic area or field of use) by the University of California increased after

the licenses were executed. Similar to Sampat and Ziedonis, Drivas et al. regard the increase in non–licensee

patent citations as a reaction to the potential commercial value signaled by the negotiation of the license.

It is possible that a similar signaling effect associated with the execution of a license could increase

citations to patented publications linked to the license. In such a case, the issue of a license “demonstrates”

that a particular area of research has potential scientific or commercial value, leading other investigators

to pursue work in closely related fields. It is also possible (see Larsen (2011)) that contemporary academic

researchers may choose research areas partly based on their potential private profitability, and therefore

might respond positively to a “signal” that a given area of research has attracted the attention of industrial

licensees. Regardless of whether a license signal operates through perceptions among researchers of scientific

or commercial potential, this argument predicts an increase in citations to patented publications following

the negotiation of the license.

Equally plausible arguments, however, suggest a chilling effect of licensing on scientific communication.

Reactions by university technology licensing offices and/or their licensees to any evidence of patent infringe-

ment (even for research purposes, inasmuch as the research exemption from such infringement suits remains

unclear) may be swifter and stronger in the case of patents that are licensed. And licenses may include pro-

visions for reach–through royalties and limitations on the disposition of intellectual property on follow–on
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research. Moreover, the negotiation of a license may take considerable time, delaying access to the materials

or tools embodied in the disclosure.

We are thus agnostic on the likely direction of any effect of licenses on scientific communication associated

with publications linked to licensed academic patents. Indeed, both effects may be present for papers in

various fields of research, and we hope that our findings shed light on the magnitude of any offsetting effects.

2.2 Research Inputs and Material Transfer Agreements

Patents and licenses increase the “excludability” of intellectual property for other researchers, exposing

them to potential legal liability in the event that they utilize or exploit the intellectual property protected by

patents and issued to others for their own research or commercial use. A very different form of “excludability,”

highlighted by Walsh et al. (2007), concerns the denial by one researcher of physical access to materials (or

other research results) that are inputs to the experiments of another researcher.3 The survey results of Walsh

et al. (2007) indicate that such denials can impose significant costs and delays on the scientific work of other

researchers, costs and delays that according to these authors, exceed those associated with patents.

Research inputs have been widely (and imprecisely) identified as “research tools.” For example, the NIH

Working Group on Research Tools (1998) defines them as “the full range of resources that scientists use

in the laboratory. . . the term may thus include cell lines, monoclonal antibodies, reagents, animal models,

growth factors, combinatorial chemistry libraries, drugs and drug targets, clones and cloning tools (such as

PCR), methods, laboratory equipment and machines, databases and computer software.”4

As we noted above, Walsh et al. (2007) argue that denials of access to such research tools are more

likely when the erstwhile supplier of them is engaged in “commercial activity,” such as licensing of the

invention disclosure associated with them. Interviews we conducted for this study supports this view, with

one scientist (who was involved in a start–up firm) saying “if another company asked to use our [materials]

for [same purpose as our company uses them] we would say ‘no.’ ”5

Even when access is granted, however, researchers gaining access to research tools that are associated

with licensed disclosures may encounter difficulties, as highlighted by the celebrated case of the Oncomouse

(Murray 2010):
3“More problematic [than patents in limiting researcher access] is access to materials and/or data possessed by other re-

searchers, such as cell lines, reagents, genetically modified animals, unpublished information, etc. Restrictions on access,
however, do not appear to turn on whether the material is itself patented. Rather, such restrictions are more closely associated
with scientific competition, the cost of providing materials, a history of commercial activity on the part of the prospective
supplier, and whether the material in question is itself a drug.” (Walsh et al. 2007; p. 1185)

4The National Research Council panel has a similarly broad definition that includes materials that “. . .may be critical inputs
for the success of a research project.” (National Research Council 2010; p. 7).

5Even though this scientist was unwilling to share materials in this instance, in other instances he/she had shared materials.
This is important for this study, because some successful transfers of materials can be observed.
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“In 1984, scientists at Harvard University carefully engineered a new mouse to have a predis-
position to cancer, the Oncomouse. . . The Harvard researchers . . . patented their creation and
subsequently licensed this patent to DuPont. . .

[Dupont] set a high price per mouse. . . placed restrictions on breeding programs. . . demanded
publication oversight. . . [and] insisted upon a share of any commercial breakthroughs made using
the Oncomouse.”

These and similar restrictions may have an adverse effect on the use by other researchers of research tools

such as the Oncomouse. Moreover, as the NIH Working Group on Research Tools (1998) noted in its report,

licensees may have an incentive to restrict access to these materials:

“If the sponsor or licensee plans to develop the research tool as a commercial product for sale to
researchers, it may be unwilling to permit the university to undercut its position in this particular
market by giving the tool away to potential paying customers.”

The surveys of scientists by Walsh et al. (2007) and Lei et al. (2009) found requests by researchers for

research tools from industrial researchers, a group more likely to be engaged in commercial applications of

research, are rejected approximately twice as often as requests to other academics.

Based on these arguments, we anticipate that access to research tools (inputs to other scientific ex-

periments) that are associated with licensed intellectual property (a sign of the commercial exploitation,

prospective or otherwise, of the intellectual property) may well be restricted, even when terms for its ex-

change among researchers are successfully negotiated through a Material Transfer Agreement (MTA). Li-

censing of IP related to research tools thus may have negative consequences for follow–on scientific research

and therefore may have a negative effect on citation rates for publications related to such IP.

As the discussion of “research tools” thus far indicates, developing a definition that facilitates their identi-

fication and empirical analysis is challenging. The definitions of research tools employed by the NIH Working

Group and Walsh et al. (2007) are very broad and do not lend themselves to empirical operationalization.

Instead of attempting to develop and defend a definition of research tools that relies on the characteristics of

the relevant invention disclosure or patent, we identify research tools based on the association of a Material

Transfer Agreement (MTA) with a given patented invention disclosure.

Material Transfer Agreements (MTAs) are agreements that govern the transfer and exchange of materials,

usually biological, used in research. Although the informal exchange by researchers of biological materials for

use in fundamental research has a long and occasionally controversial history in the biomedical sciences, these

materials exchanges historically were governed by little more than a letter from the source accompanying

the materials, requesting acknowledgement and in some cases asking that the materials not be passed on to

third parties (McCain 1991). The more elaborate MTAs used in contemporary materials exchanges appear

to be a byproduct of the post–1980 surge in academic patenting (Streitz and Bennett 2003). One of the few
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analyses of the role of MTAs in the scientific research enterprise is Stern’s discussion of biological resource

centers (2004).

Biological resource centers (BRCs) are nonprofit materials depositories that play a key role in maintaining

the reliability and provenance of cell lines used by industrial and academic researchers—as Stern notes,

contamination of widely used cell lines has caused major research fiascoes in the past several decades. Stern

argues that the use of MTAs by BRCs has aided the exchange of materials, and recommends that MTAs

be a standard complement to patents covering biological discoveries: “Putting MTAs in place at the time

of patent approval lowers the cost of mutually beneficial transactions between the developers of materials

and follow–on researchers and widens the availability of patented biomaterials” (2004; pp. 96–97). Similarly,

Walsh et al. (2003) argue that the formalization of materials exchanges through MTAs may simplify these

transactions and facilitate researcher access.

To confirm that MTAs are a good indicator that an invention disclosure is associated with a research

tool, we examine U. C. Berkeley data on incoming MTAs—that is, research materials requested from other

researchers by U.C. Berkeley researchers. These data describe the requested materials and their intended use

by the recipient U. C. Berkeley researcher. We analyzed a random sample of 50 of these MTAs, and found

that 44% were related to DNA/RNA/Plasmids, 32% concerned cell lines or other biological/chemical agents,

16% were animal models, 6% were data transfers, and 2% were concerned with “other non–research inputs.”

Overall, therefore, 98% of these MTAs involved materials that fit within the NIH Research Tools Working

Group definition of research tools. We also analyzed the intended use for the materials requested through

the MTA by U. C. Berkeley researchers, and found that 94% of the MTAs indicated that the requested

material was to be used as an input to further research and a further 4% implicitly indicated that such uses

were intended.

Based on our analysis of U. C. Berkeley MTAs therefore, we believe that our treatment of the presence of

an MTA as an empirical indicator that a given invention disclosure is indeed a research tool and/or input to

follow–on scientific research is defensible. It is important to note two caveats associated with our empirical

use of MTAs as indicators of research tools, however. As Walsh et al. (2007) and Mowery and Ziedonis (2006)

point out in their discussions of MTAs, a majority of the materials transfers among academic scientists do

not rely on formal MTAs that are disclosed to academic Technology Transfer Offices (TTOs). Although we

believe that the presence of an MTA is a reasonable indicator that a given disclosure has applications as a

research tool, our data in fact contain many other disclosures (including disclosures that are patented and

licensed) that may well be research tools but (lacking an MTA) cannot be identified as such. It is likely that

our empirical approach thus understates the effects on citations of licensing of patented disclosures that are

research tools. In addition, our data enable us to only identify the “effects of MTAs” that are negotiated
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and agreed to by all parties to the materials transfer. In other words, and in contrast to Walsh et al. (2007),

we do not identify the effects on scientific research of the denial by researchers of other researchers’ requests

for research materials. Nevertheless, our results seem to indicate that the types of restrictions associated

with MTAs linked to licensed disclosures that were examined by Murray (2010) in her discussion of the

Oncomouse may indeed have effects on scientific communication, as measured by citations to publications.

3 Data

We draw on two principal sources of data for our empirical analysis. The first, the “IP data,” is an extract

from the technology disclosure database maintained by the Technology Transfer Office within the University

of California Office of the President (UCOP). UCOP monitors and in some cases manages invention disclo-

sures, patent applications, and licensing transactions for all campuses of the University of California (nine

campuses, including five medical schools, during the period of our study).

These data list all 11,341 inventions reported by University of California faculty from 1997 to 2007. These

disclosures led to 2,035 issued U. S. patents, 1,890 licenses to these patents, and 3,853 MTAs by the end

of 2009. Note that only a small subset of technology disclosures is patented, and universities’ patenting

propensity varies among fields of academic research—since the 1980s, patenting and licensing activity at

U. C. has been dominated by biomedical research (Mowery, et al., 2001). The distribution of MTAs also

is highly skewed, with few disclosures generating the majority of MTAs and many disclosures associated

with no MTAs. This echoes the finding in Mowery and Ziedonis (2006) that MTAs are disproportionately

concentrated in biomedical fields of research, as are licenses.

The second source, “publications data,” comes from Web of Science, an internet–based service that tracks

the bibliographic information and the citations to and from articles published in 10,000 of the highest-impact

journals across 256 disciplines.6

From Web of Science we gathered the title, author names, journal, publication date, and citation in-

formation for each scientific paper. The information on “forward citations,” citations from later published

papers to that publication, was extracted through the end of 2009. Web of Science also provides a number

of well–accepted measures of journal quality. The most prominent of these is the “impact factor,” which

measures the average number of times an article in that journal is cited in its first two years, and which we

include in our analysis.
6http://thomsonreuters.com/products_services/science/science_products/a–z/web_of_science (downloaded May 2010).
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4 Methodology

4.1 Sample

Our study focuses on finding differences in the citations associated with patented publications, depending

on whether or not they are licensed. One advantage of restricting our comparison to patented publications

is that they are more likely to be similar in quality and other characteristics. In particular, because all of

the underlying disclosures are patented, differences in “commercializability” are considerably lower than they

would be in a general sample. Nevertheless, there may well exist other unobserved differences within our

sample between the patented publications that are licensed and those that are not. Below we describe how

we construct a control sample to address these issues.

Our sample is also restricted to patented publications with at least three authors, which is a by–product

of the method that we use to match publications and patents (discussed in detail below). This restriction

imposes two additional conditions on our sample. First, a patent must have at least three inventors. Second,

the associated publication must list at least three of those inventors as authors. Figure 3 depicts the

consequence of these restrictions on the sample.

*** Figure 3 Here ***

Column 1 in Figure 3 represents the 2035 patents in the full sample. By excluding patents with fewer

than three inventors, we omit 944 patents listing one or two inventors (Column 2) from the full sample,

leaving 1091 patents. From these 1091 we exclude an additional 363 three–or–more–inventor patents where

fewer than three inventors were listed as authors on any publication, resulting in a remaining sample of 728

patents (Column 3). Of these 728 patents, 406 list three inventors, 201 list four inventors, and 121 list 5 or

more inventors. The fourth column of Figure 3 reports the number of journal citations “per patent,” (i.e., the

number of journal citations for all publications that are matched, using the three–name overlap restriction,

to that patent). Column 5 contains 716 patents with citations and a further 12 with no citations (labeled

as “partially in the sample”). These latter 12 are kept in our sample to avoid excluding them based on the

outcome variable (moreover, they are at risk of being cited). The resulting sample consists of 728 patents.

At the other extreme, a few publications receive large numbers of citations, creating the risk that these

outliers would unduly influence our empirical results. To ensure that the results are not driven by outliers,

we trim the 2.5% highest and lowest treated observations and then examine the remaining distribution of

residuals.
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4.2 Matching Invention Disclosures, Patents, and Scientific Publications

4.2.1 Constructing Patent–Paper “Pairs”

Our empirical analysis adopts a methodology that is broadly similar to that of Murray and Stern (2007).

We measure “scientific communication” as the number of times a published scientific paper is cited by subse-

quent articles published in scientific journals (a “count”). Our sample includes only scientific publications that

are patented—that is, where the discovery has also been disclosed by the researcher to the university, and

the university has subsequently patented it. We also observe the licenses and MTAs, if any, associated with

these patented invention disclosures. To construct this sample, we rely on the connections between patents,

licenses and MTAs provided by UCOP. Connecting patents to scientific publications is less straightforward.

Murray and Stern (2007) matched patents to articles published in the journal Nature Biotechnology by read-

ing both patents and the academic articles and relying on expert judgment to link them. Our methodology

instead employs an “inventor–based matching” technique to link patents to scientific papers.

Inventor–based matching relies on two assumptions. First, inventors listed on a patent are likely to be

the authors listed on related publications. Second, the patent application date is likely to occur near the

publication date of the academic article. Based on these assumptions we construct a maximum–likelihood

estimator for the publication(s) that best matches a particular patent. For each inventor name listed in the

patent, we first identify all publications authored within a five year window that includes the year of the

patent application and the two years prior to and following that year (t − 2 to t + 2). We then determine

the instances in which the inventors’ publications overlap. Those publications with the greatest overlap are

chosen as matches. For example, if a patent has three inventors, we extract three publication sets (one for

each inventor) and retrieve publications common to all three inventors. Figure 4 illustrates this process for

the three–inventor case.

*** Figure 4 Here ***

This approach can result in multiple publications as “best” matches, in contrast to Murray and Stern

(2007), which matches one publication to each patent. To illustrate, consider patent number 7011723,

“Adhesive Microstructure and Method of Forming Same.” The patent pertains to adhesives inspired by the

design of gecko feet and credits four inventors. The inventor–based matching approach defined above yields

two matches of the underlying invention to publications in scientific journals. The first, entitled “Adhesive

Force of a Single Gecko Foot–Hair,” appeared in Nature in March 2000. A second article, “Evidence for Van

der Waals Adhesion in Gecko Setae” was published in Proceedings of the National Academy of Sciences in

2002. In this case, all four patent inventors were listed on each publication.
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Inventor–based matching does not restrict us to instances in which all inventors are listed as authors on

the publication. For instance, if in the example above a lab technician had also been listed as an inventor

on the patent, but was not included on any linked academic publications, the algorithm would choose the

publication(s) with the maximum possible overlap. In this instance the publications listing four of the five

inventors would be chosen since there would be no five–out–of–five–inventor matches.

4.2.2 Maximum–Likelihood Estimation for Patent–Paper Pairs

As highlighted above, an implication of the inventor–based matching method is that a single patent can

be associated with more than one publication. Such a match will occur precisely when multiple publications

share the same level of overlap between the inventors, and when no publications have a greater overlap.

Based on the “best–available” property of maximum–likelihood estimators, we assume that a publication

and a patent are more likely to be a match if they share an author:

p
(
matchpubi&patentj | authork ∈

(
authorspubi ∩ inventorspatentj

))
> p

(
matchpubi&patentj

)
(1)

Here authorspubi and inventorspatentj are the sets of authors for publication i and the inventors for

patent j, respectively. Given these parameters, pubm is a “match” for patentj if

m ∈ argmax
i

∏
i,k

p
(
matchpubi&patentj | authork ∈

(
authorspubi ∩ inventorspatentj

))
(2)

As with all maximum–likelihood estimators, a “best” estimate is not necessarily precise (Casella and

Berger 2002). In general, accurate matches are less likely when the precision of the estimate is low. For

example, our matching algorithm would be unlikely to produce correct matches if, on a four–inventor patent,

we identified only publications that listed a single inventor as an author. In this case, the algorithm would

theoretically identify as matches all publications by all of the inventors in the relevant (t−2 , t+2) window.

To avoid such errors and improve the precision of the estimate, we restrict matches to those with three or

more authors. The logic behind this criterion is illustrated in Figure 5, which portrays the number of papers

matched to each patent in our dataset linked by at least two inventors and authors and lists the number of

names common to both the patent and the published paper.

*** Figure 5 Here ***

Figure 5 shows that 82% of the sample patents is linked by the inventor–based matching algorithm to

between one and five papers, while the remaining 18% of our patents matches to six or more publications. The
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large number of papers associated with each of the patents in the 18% may reflect common scientist names

(e.g., “J. Smith”). Figure 5 also demonstrates that patents matched to more than five publications typically

have only two names that are common to both the inventor list and the author list. We therefore exclude

all the patents marked “2” in Figure 5, noting that we have previously excluded patents and papers with

only one name in common. This leaves us with 728 patents and their related publications. The statistical

implication of dropping publications with an overlap of two authors is to restrict the sample to patent–paper

pairs with a higher expected probability of a match, thus reducing the likelihood of including false matches

(hereafter “noise”) in our sample.

We examine the effect of restricting our sample to higher levels of inventor–overlap by comparing the

sample statistics of 3–inventor overlap and 4–inventor overlap samples, as shown in Columns 1 and 2 in

Table 1. Column 3 reports difference of means test results for each variable.

*** Table 1 Here ***

The average publication year, publication age when the citations are observed, and the proportion of

the papers in the Life Sciences (principally biology, biochemistry, and medicine) are relatively stable across

the samples, suggesting little or no introduction of bias along these dimensions.7 In contrast, two measures

of publication quality, the number of citations per year and the average impact factor of the publication’s

journal, are higher in the 4–inventor overlap sample in Column 2. Since correct matches are patented

publications by definition and incorrect matches are random additions from the general pool of publications,

it is not surprising that the removal of incorrect matches yields an increase in average publication quality.

This result is consistent with our argument that higher–overlap specifications reduce noise in the sample.8 It

is also consistent with Murray and Stern’s (2007) finding that patented publications receive more citations

than unpatented publications.

4.2.3 Validation of the Inventor–Based Matching Technique

To assess the validity of this matching algorithm, we compare its output with the hand–matches compiled

by Murray and Stern (2007).9 For each patent in the Murray and Stern sample, we generated maximum–

likelihood estimates of the “best” publication matches using the inventor–based matching technique. Of

the 170 patent–publication matches identified by Murray and Stern, our automated method determined an

identical “best” publication match for 95% of the sample. In a small number of cases (4%), our algorithm
7As Table 1 shows, while small, some of these differences are statistically significant. In the case of Publication Year, the

difference is equivalent to a few months.
8All else equal, it is plausible that publications associated with patents will tend to be of higher quality than an average

unpatented publication. So, if tightening the “overlap” restriction results in a sample with fewer unpatented publications
(“noise”), then it should have a higher average citation rate, which is what we observe.

9Fiona Murray and Scott Stern graciously provided their data to us for comparison.
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identified a “better” match.10 Only in two cases (1% of their sample) did our approach yield matches

otherwise inconsistent with their hand–matching process.

In summary, our inventor–based matching approach, while demonstrating accuracy comparable to the

hand–matching approach employed by Murray and Stern (2007), possesses several advantages, (a) it does not

impose a simple one–to–one relationship between patents and publications, (b) it is transparent, reproducible,

and does not rely on domain expertise, (c) it is applicable to multiple scientific fields, and (d) it is automated,

making larger sample sizes feasible.

4.3 Construction of Treatment and Control Groups

Designing an adequate specification to test the effect of licensing on scientific communication is a chal-

lenging exercise, because of the complex and varied patterns of citations that publications may receive during

our sample period. Citations to some publications may grow throughout the period of our data, whereas for

other publications, citations may rise, peak, and then decline. Moreover, the timing and rate of the ascent

and descent in citations may vary. It is thus difficult to construct a sufficiently flexible parametric model

to adequately accommodate these differences.11 Moreover, if the specification is not sufficiently flexible, a

poorly modeled sub–group could bias our results. Because of the complex and potential non–linear interac-

tions of various control variables that we may employ to construct treatment and matching control groups,

we therefore pursue a flexible nonparametric approach. This technique allows us to weaken the assumption

of linearity and enables us to account for the many plausible interaction effects that could be present in our

analysis.

The non–parametric method we use is “nearest neighbor” matching. It searches the set of non–treatment

observations to identify the one that “best” matches each treatment observation. Collectively, these “best

matched” non–treatment observations form a control group. Because this search is done based on observ-

able characteristics, the control and treatment observations should be similar along these dimensions by

construction.12

10The difference here is likely because of the direction of matching. Murray and Stern began with a set of publications and
found the most–similar patent, whereas our analysis starts with a patent and finds the most–similar publication. The patent
identified by Murray and Stern may have been the best match for that publication, but another publication may be an even
better match to that patent. Our non–expert review of the “better” matches suggests that they are well matched.

11It is reasonable to assume that publications in more highly cited journals accrue more citations, which would argue for
including Journal Impact Factor as a control variable. Similarly, the academic discipline (hereafter Journal Subject) could also
drive citation patterns, as could how much higher cited a publication is prior to the license (Citations in t−1, Citations in t−2).
Each of these the effects could be non–linear, which would suggest the inclusion of higher–order terms. Interaction terms between
these variables would also be important, since the effects of Journal Impact Factor could differ by discipline. Each of these
effects would affect a publication differently at different points in time, calling for them to be interacted with age fixed effects.
Fully interacting all of these effects to capture the entire complexity would result in many of the parameter estimates to be
determined by small numbers of observations, or have no observations at all.

12Restricting ourselves to control observations that match the treatment observations decreases our sample size. The effect
that this has on the precision of our estimates is ambiguous, however. Smaller samples will tend to reduce our precision (making
the standard errors larger), but there may also be a countervailing effect as the smaller sample will likely be more homogenous,
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Since matches are found for the treated observations, the estimate from our analysis should be interpreted

as an “average treatment effect on the treated” (ATT), that is, the average effect of a license on citations

to patented publications similar to those that do receive licenses (in contrast, for example, to the effect of a

license on an average publication or an average patented publication).

We identify the control matches using the “Genetic Matching” technique, which is a generalization of

the propensity scoring matching method (Rosenbaum and Rubin 1985) that employs a search algorithm to

iteratively improve covariate balance (Diamond and Sekhon 2013, Sekhon 2011).13 Our procedure employs

two types of variables, those where we require an exact match and those where a nearby (“nearest neighbor”)

match is sufficient. We force an exact match on the following variables:

• Publication Age: Number of years since the paper was published

• Journal Subject: Academic discipline of the journal (e.g., medicine)

• Patent Granted (yes/no): Whether the related patent has been granted at the time of license

• MTA Issued (yes/no): Whether the paper has an associated MTA at the time of the license

For example, these restrictions imply that in our analysis a (licensed) treatment observation in the life

sciences with an issued patent and no MTA would be compared with a control group observation in the life

sciences with an issued patent and no MTA, and that the time period covered by the comparison would be

identical for the treatment and control observations.

For each treatment observation that matches on these exact characteristics, we then choose its nearest

neighbor based on its relative proximity in the following five characteristics:

• Journal Impact Factor

• Publication Year

• Citations in t− 2: Number of citations two years before the treatment

• Citations in t− 1: Number of citations one year before the treatment

• Slope of citation curve between t− 2 and t− 1.

In each of these dimensions we limit the maximum “distance” between each treatment and control obser-

vation to one standard deviation for that variable (the “caliper”), thus excluding any observation that differs

and thus increase precision.
13Treatment and control variables are in “covariate balance” when they have the same joint distribution of their observed

covariates (Diamond and Sekhon 2013). According to Sekhon (2011) in referring to the genetic matching software GenMatch,
“GenMatch dominates the other matching methods in terms of MSE [Mean Squared Error] when assumptions required for
EPBR [Equal Percent Bias Reduction] hold and, even more so, when they do not.” Previous social science researchers who
have also used this generalization of the propensity score matching method include Morgan and Harding (2006), Gilligan and
Sergenti (2008), Eggers and Mainmueller (2009), Ladd and Lenz (2009), Gordon (2009), and Hopkins (2010).

13



by more than that amount on any characteristic.14 Under this procedure, treatment observations with no

equivalent control observation are dropped from the sample.

We further control for any remaining differences in the characteristics between treatment and control

observations by applying a “covariate bias adjustment.” We conduct a multivariate linear “regression ad-

justment” on the post–matching sample of treatment observations plus their matched controls. Collectively,

these restrictions result in a control group such that for each characteristic, the observation matches either

exactly or within one standard deviation to the corresponding treatment observation characteristic.

4.4 Methodology

Once we have generated our treatment and control group sample, we employ a difference–in–differences

approach to estimate the size of the treatment effect. More specifically we compare the change in the

number of citations to one patented publication following the execution of a license (a treated observation)

to the change in number of citations for a comparable publication that lacks a license (a matching control

observation). The specification is as follows:

Treatment Effect = (Citationst+1 − Citationst−1)pubw/License

− (Citationst+1 − Citationst−1)pubw/o License

(3)

Using a differences–in–differences estimator allows us to avoid bias associated with changes that affect

the “before” and “after” periods simultaneously. For example, in the matched sample case, if a particular

scientist receives on average five additional citations (relative to the sample average) per year, these citations

will be included in both (Citationst−1) and (Citationst+1) terms, thus the impact on the estimate will be

zero. Our estimator thus accomplishes the same effect as author or publications fixed effects. It is also

robust to these types of unobservable differences, as well as the observable differences controlled for using

matching.

To summarize, we obtain our covariate balance by using two techniques. First, we use matching to find

the nearest neighbor to our treatment observations. This non–parametric technique means that we make

fewer assumptions about the parametric form of the effect than we would with a linear, or generalized linear

(e.g., negative binomial) formulation. Secondly, we perform a multivariate linear regression (using the same

covariates used in matching), to adjust for any remaining differences between the groups.15 Because we
14“Coarsened exact matching (CEM) is an alternative matching approach. Employing a caliper rather than CEM, however,

allows us to exclude both observations whose observable covariates would make them outliers and those which would qualify
them as “inliers,” that is, observations that are within the range of the data, but nevertheless lack a comparable control
observation (Sekhon 2011).

15For the license effect: ∆Citations = β0 + β1Age + β2Journal Subject + β3Patent Granted + β4MTA Issued(Y/N) +
β5Journal Impact Factor + β6Publication Y ear + β7Citationst−2 + β8Citationst−1 + β9Citations Slope+ ε. Our coefficient
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expect such differences to be smaller, the linearity assumption embedded in least–squares is more plausible,

although still subject to the same criticisms noted above. Rubin (1979) discusses the value of using these

(slightly modified) techniques and concludes that “pair–matching coupled with regression adjustment on the

matched pairs is a quite effective general plan for controlling the bias due to matching variables, and this

combination is clearly superior to regression adjustment” (p. 318).

5 Results

Before we estimate the effects of licensing on citations to patented publications, we first must verify the

covariate balance between the treatment and control groups. An effective matching procedure should yield

summary statistics for the treatment and control groups that are similar. Table 2 reports the mean of each

group for the control variables and the results of t–tests (difference of means) and Kolmogorov–Smirnoff

(KS ) tests (difference in distributions).

*** Table 2 Here ***

The equal means (and equivalent distributions) across the treatment and control groups for first four

variables reported in Table 2, Publication Age, Journal Subject, Patent Issued, and MTA Issued, reflect our

requirement of exact matching on these dimensions across the two groups. For the remaining variables, means

for the control and treatment groups appear to be similar, but some differences are statistically significant.

Most notably, the means and distributions between the two groups are significantly different at a 1% level for

Journal Impact Factor and Citation Slope from t–2 to t–1. The Kolmogorov–Smirnoff test also shows that

the distribution of Citations in t–1 differs at 1% significance across the two groups. Overall, the presence

of significant differences in several of the matching variables suggests that the regression–adjusted analysis

improves covariate balance beyond that achieved by relying solely on the caliper matching approach.

5.1 The Effects of Licensing on Citations to Patent–Linked Publications

We now turn to estimating the effects of licensing on scientific communication as measured by citations

to patent–linked publications.16 We report the results of our findings in two ways. The effect can be seen

directly through the citation pattern for the treatment group (dashed line with circles) and the control group

(dotted line with squares), as shown in Figure 6.

*** Figure 6 Here ***

of interest is γ, which we present in our results.
16Although exclusive licenses represent 97% of the licensing activity (with 3% of the licenses being non–exclusive), results are

reported by types of license. An analysis of exclusive licenses only (not reported) produces similar results.
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As depicted in Figure 6, patented publications receive more citations starting two years after a license

is executed than do publications that are linked to unlicensed patents. This pattern of increased citations

two years after the license is consistent with a more gradual expansion of awareness within the research

community of the license that increases citations to the relevant publication only after a lag, reflecting the

lack of any public announcement of the license. In this interpretation, scientists gradually adjust their

research agendas to increase their attention to the area of research at the center of the license, in response

to the positive signal of the commercial or scientific quality embodied in the license.

Figure 7 reports results from the regression adjustment analysis, confirming the post–licensing citation

pattern presented in Figure 6 and testing for the statistical significance of the differences in citations between

the two groups. The effect of licensing on the number of citations is near zero and not statistically significant

in the first year after the execution of the license. The average difference in citations between the treatment

and control groups is 2.4 in the second year and 2.1 citation in year t+3, both of which are significant at the

1% level. This pattern is very similar to the citation trends depicted in Figure 6 due to the covariate balance

prior to the regression adjustment. The magnitude of the differences between the two groups in years t+2

and t+3 implies that the average publication receives an increase of approximately 25% in citations in these

two years compared to the control group.

*** Figure 7 Here ***

Inspection of the residuals after our regressions (not reported) shows that the mean and median are

aligned and that the residuals are distributed approximately normally, supporting the validity of our model.

5.2 The Effects of Licensing on Citations to Patent–Linked Publications Asso-

ciated with Research Tools

We now turn our attention to the effects of licensing on patented publications that we believe are more

likely to be associated with research tools. In their test of the effects of patenting on citations to “research

tool”–related publications, Murray and Stern (2007) defined such publications as those linked to any patents

within their sample in the 3–digit patent classes 435 (Chemistry: Molecular Biology and Microbiology) and

800 (Multicellular Living Organisms and Unmodified Parts Thereof and Related Processes). A patent class–

based definition, however, does not account for the patent’s use. Instead of employing patent classes, as

we noted above, we believe that patented publications for which MTAs are issued are likely to fall within a

rough definition of “research tool.”

Our analysis of the effects of licensing on this class of patented publications restricts the sample to only
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those with materials transfer agreements.17 Thus, both treatment and the control observations have MTAs

and the difference between them is whether a license is issued.18 Table 3 presents the covariate balance for

this sample.

*** Table 3 Here ***

Although the difference in means for the control and treatment groups in the MTA–linked sample is

larger in absolute magnitude than that for the full sample reported in Table 2, the MTA sample reveals fewer

statistically significant differences in means. For the MTA–linked sample, only the t–test of the difference

of means for Publication Year is highly significant (at the 1% level), while the distributions between the

treatment and control group observations are weakly significant (10%) only for Journal Impact Factor. This

suggests a greater level of noise within the MTA–linked observations than in the full sample.

As we did in our analysis for the full sample, we present both the non–parametric citation curve for the

matched samples in Figure 8 and the regression results in Figure 9 below.

*** Figures 8 and 9 Here ***

Our analysis of the effects of licensing on citations to patent–paper pairs that are associated with MTAs

reveals a very different effect from that observed in the overall sample. For the overall sample, licensing

is associated with an increase in citations to the publications linked to the underlying patented disclosure.

For the MTA–linked sample, however, licensing is associated with a decline in citations. Using the covariate

adjusted values (Figure 9), the magnitude of the licensing effect is -3.6 citations in year t+1 and -3.2 in year

t+3 (and statistically significant at the 1% level in those two years), but is not statistically significant from

zero in year t+2.19 Overall, these coefficients represent a decrease in citations of approximately 30% for the

average publication, although our small sample size calls for caution in interpreting the exact magnitude of

the effect.20

The timing of the “license effect” for citations to MTA–linked patent–paper pairs also suggests a more

rapid negative impact than was observed for the positive effect of licenses on citations in the overall sample.
17We include MTAs that are issued before or after the license. In doing so we assume that an invention receiving an MTA

irrespective of when the MTA was executed (i.e., the execution of the MTA) does not “convert” the material into a research tool.
Restricting the sample to instances where an MTA exists prior to the license could ensure against possible reverse causality,
however. This restriction led to results that are similar in direction, although with much smaller sample sizes. Thus we report
results with the larger sample of MTA–linked inventions.

18Because we also match treatment to control observations based on whether the observation has an MTA, treated observations
with MTAs prior to license are matched to controls that also already have an MTA, while those that have not received an MTA
prior to license are matched to controls that also have not yet received an MTA as of the license execution date.

19We do not ascribe any economic meaning to the unusual result in t+2. This can be seen in robustness checks with 2–inventor
overlap (coefficients of -5.3***, -3.4***, -5.1*** for years t+1, t+2, and t+3 ) and 2–inventor overlap considering only patents
with fewer than six publications (coefficients -5.9***, -4.1***, -5.9***). Both show strong effects in t+2 as well as in t+1 and
t+3.

20For robustness, we also conducted our analysis of research tool licensing using the Murray and Stern (2007) patent class–
based definition of research tools and obtained similar results.
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The apparently more rapid appearance of the negative effects on citations observed in the MTA sample is

broadly consistent with the delays and project abandonment observed in the surveys by Walsh et al. (2007)

and Lei et al. (2009), as well as interviews we conducted for this study. Moreover, declines in citations for the

MTA–linked disclosures that are licensed occur as early as the year of the execution of the license. Inasmuch

as the citations to the focal publication associated with the patented disclosure appear only after a lag, the

speed of this observed effect suggests that researchers or universities may limit or impose other restrictions

on sharing of “research tools” during the negotiation of the license.21

6 Conclusion

This paper has investigated the effects of licenses on communication among scientists of published research

results that are linked to patented academic invention disclosures within the University of California system.

Our results suggest that in general, licenses on scientific work are associated with an increase in the number

of citations to related publications, but that this effect differs for a class of patented invention disclosures

that we believe includes a high share of research tools. For these inventions we observe a decrease in the

number of citations following a license.

Our results are consistent with other findings in the literature that suggest that licensing may have a

positive signaling effect, but that licenses on research tools may lead to restrictions on input materials that

are important for follow–on research.

These findings should be interpreted with caution, however. Our citation data do not currently incorpo-

rate the identities of the individuals and organizations citing the scientific journals within our sample. Any

“self–citations,” or citations made by the authors of the original work, would not represent knowledge flows.

Their inclusion, therefore, could overstate the effect of licenses on scientific communication.

Accounting for citers’ identities would also allow us to investigate the extent to which follow–on research is

conducted by licensees, thus suggesting the presence of market–based knowledge flows—or by third–parties,

which would indicate spillovers operating within cumulative research. We are presently incorporating the

identities of authors of citing journal articles into our data in order to address these issues in an upcoming

revision.

This study makes three contributions. First, it introduces a method for linking patents and publications

associated with an academic research advance, and thereby automates a previously arduous process that

has been difficult to scale up. Second, it employs a matching methodology that avoids strong parametric

assumptions that may not be appropriate for the complex interactions that underlie journal citation patterns.
21Note that the identification of any in–year effect is much weaker, since the exact timing of the license during the year is

not accounted for in the analysis.
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And finally, but most importantly, this paper contributes to our understanding of the effect of the licensing

of intellectual property rights covering academic research output on scientific communication.
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Table 1: Summary Statistics for Samples with Three and Four Author Publication Matches to Patents

Samples
Inventor Overlap 3+ 4+
Sample Size†

Publications (000) 1.7 0.6
Patents (000) 0.7 0.3
Publications with MTAs 261 79
Publications / Patent 2.4 1.8
Observations in the Life Sciences 49% 44%
Sample Statistics†† Difference†††
Citations Per Year 11.4 16.2 ***

(26.1) 36.3)
Average Impact Factor 8.7 11.0 ***

(8.4) (9.8)
Publication Year 2000.7 2000.4 ***

(2.6) (2.8)
Publication Age 3.2 3.3 -

(2.6) (2.7)
Age at MTA Issuance 2.4 2.6 **

(2.7) (2.6)
Age at Patent Issuance 3.5 3.5 -

(2.0) (2.0)
†Values in the parentheses are the number of standard deviations.
††Sample restricted to those publications with 7 years of citation data (only first 7 years of data included)
†††Comparison is a t–test between those with 3–inventor overlap (not 3+) and those with 4+.

Table 2: Covariate Balance for the Full Licensing Sample

Full Licensing Sample
Covariates Mean Treated Mean Control t–Test KS Test
Publication Age 2.0 2.0 - -
Journal Subject† 4.3 4.3 - -
Patent Issued 0.56 0.56 - -
MTA Issued 0.04 0.04 - -
Journal Impact Factor 7.3 7.1 - -
Publication Year 2000.7 2000.5 * -
Citations in t–1 6.6 6.1 - ***
Citations in t–2 4.3 4.2 - -
Citation Slope from t–2 to t–1 2.3 1.9 *** ***

Notes:
*** p<0.01 ** p<0.05 * p<0.10
†Journal Subject is a categorical variable, with each subject mapped to a random integer. Therefore the 4.3 listed has no
literal meaning, but the equality between treatment and control, as well as well as the lack of any difference, reinforce the
success of the exact matching.
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Table 3: Covariate Balance for the Research Tools Sample

Research Tools Sample
Covariates Mean Treated Mean Control t–Test KS Test
Publication Age 1.9 1.9 - -
Journal Subject 3.9 3.9 - -
Patent Issued 0.5 0.5 - -
MTA Issued 0.3 0.3 - -
Journal Impact Factor 5.2 6.0 - *
Publication Year 2001.4 2000.5 *** -
Citations in t–1 5.4 5.0 - -
Citations in t–2 1.2 1.3 - -
Citation Slope from t–2 to t–1 4.3 3.8 - -

Note:
*** p<0.01 ** p<0.05 * p<0.10
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Figure 1: Academia Share of U.S. Basic Research Performance
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Figure 2: Academia Share of U.S. Utility Patents

Figure 3: Sample Composition
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Figure 4: Inventor–Based Matching Example
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Figure 5: Distribution of Patent–Paper Pairs with Two or More Names Common to Both Matched Patent
and Published Paper
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Figure 6: License Effect—Full Licensing Sample

(Error bars signify ± 1 standard error.)

Figure 7: Regression Results from the License Effect–Full Licensing Sample
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Figure 8: License Effect—Research Tools

(Error bars signify ± 1 standard error.)

Figure 9: Regression Results from the License Effect—Research Tools
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