Patents as Substitutes for Relationships*

Farzad Saidi[†] University of Cambridge Alminas Žaldokas[‡] HKUST

May 20, 2016

Abstract

Firms face a trade-off between patenting, thereby disclosing innovation, and secrecy. We show that this trade-off extends to financial relationships which are defined by the value of private information. As a shock to innovation disclosure, we use the American Inventor's Protection Act that made the content of firms' patent applications public within 18 months after filing, rather than at the grant date. Firms in industries that experienced a greater change in the publicity of their patent applications were significantly more likely to switch lenders. This attests to the importance of private information for the stability of relationships. We also consider the reverse link, and find that improved lender informedness following the creation of universal banks increases the benefits of secrecy. This induces public U.S. firms to patent less, without affecting investment in innovation and its outcomes, such as new-product announcements.

JEL classification: G20, G21, O31

Keywords: patenting, loan contracting, universal banking, information acquisition, corporate disclosure, innovation

^{*}We thank Laurent Bach, Johan Hombert, John Kuong, William Mann, Gustavo Manso, Adrien Matray, Ramana Nanda, Per Östberg, Steven Ongena, Marcus Opp, Nicola Pavanini, Joël Peress, Jaideep Prabhu, José Scheinkman, Per Strömberg, Philip Valta and Stefan Wagner, as well as seminar participants at Stockholm School of Economics, University of Zurich, HKUST, University of Geneva, Université Paris-Dauphine, INSEAD, HEC Paris, University of Luxembourg, Bank of Lithuania, KU Leuven, University of Adelaide, University of Hong Kong, and the 2016 FIRCG Conference at the University of Melbourne for many helpful suggestions. We also thank Thilo Kind for excellent research assistance. Saidi acknowledges generous research support by the Cambridge Endowment for Research in Finance and the Keynes Fund for Applied Economics in Cambridge.

[†]University of Cambridge, Judge Business School, Trumpington Street, Cambridge CB2 1AG, United Kingdom. E-mail: f.saidi@jbs.cam.ac.uk

[‡]Hong Kong University of Science and Technology (HKUST) Business School, Department of Finance, Clear Water Bay, Kowloon, Hong Kong. E-mail: alminas@ust.hk

1 Introduction

The value of relationships in economic partnerships and other transactions is inevitably linked to the degree of information asymmetry between the contracting parties. Relationships are formed on the premise of facilitating (repeated) transactions, based on the level of information asymmetry and other factors such as agency concerns. In turn, the very nature of these arrangements changes the contracting parties' incentives for disclosure and for acquiring information about one another. The altered level of information asymmetry feeds back to the value of relationships and, thus, affects their duration.

In this context, much attention has been given to financing relationships, especially in the literature on financial intermediation (e.g., Diamond (1984)), going so far as to hypothesize that solving problems of asymmetric information may be the raison d'être of banks (Boot (2000)). We test this conjecture by relating fluctuations in the value of private information to the depth and stability of banking relationships.

In particular, our study focuses on firms' innovation disclosure through patents and the associated signaling value in loan contracting. We do so for the following reasons. In lending and other relationships, private information about borrowers is valuable because it is costly to acquire. This holds all the more true for extremely uncertain investments for which borrowers seek financing, such as corporate innovation. One channel through which information about innovation is disclosed is patents that aim to protect innovators' intellectual property. However, such disclosure comes at the potential cost of competitors obtaining certain technical knowledge. Thus, firms often need to take a decision whether to patent their innovation or to keep it secret.¹

¹ Bankers often acknowledge that information about corporate innovation is relevant in lending decisions as it provides a better understanding of the potential of a firm's business. For instance, a report published in 2003 by the Intellectual Property Office (the patent office of the United Kingdom), titled "Banking on IP? The role of intellectual property and intangible assets in facilitating business finance," quotes Richard Holden, Head of Manufacturing at Lloyds Banking Group, saying that "at least when it comes to understanding a company's overall position, [intellectual property] may provide comfort between doing something or not. It doesn't necessarily follow [...] that lending will increase or be directly assigned to the IP, but it might make the difference between lending and not lending. The benefits would include a better understanding of the customer, to inform lending decisions. If the credit team has confidence that relationship managers have 'dug beneath the surface' of a business, they will have a lot more comfort in offering terms."

In this paper, we argue that innovating firms face an interplay between the patenting-secrecy trade-off and their banking relationships. Indeed, as in Bhattacharya and Ritter (1983), the disclosure about firms' technological progress is relevant for their financing choices, assuming it provides a credible signal about their innovation process. This shapes firms' trade-off between patenting and secrecy insofar as "it is not possible to disclose technological information to potential investors without competing firms becoming aware of this knowledge."

Our study hinges on two empirical settings in which the value of private information in banking relationships varies due to the cost of innovation disclosure. The analysis is based on the premise that tighter bank-firm relationships are associated with lower levels of information asymmetry between lenders and borrowers, which, in turn, affects the contracting options between lenders and borrowers.

First, we exploit the American Inventor's Protection Act of 1999 (AIPA) as a source of variation in the disclosure of patent applications to estimate the effect of innovation disclosure on the stability of lending relationships. In our second setting, we conjecture that firms in relationships with informed lenders have a reduced need to signal the quality of their otherwise hard-to-observe innovation. To test this, we use bank mergers as a source of variation in information about borrower firms, and explore the impact of lender informedness on firms' incentives to reveal information about their innovation through patents.

Turning to our first setting, AIPA forced firms to disclose the content of their patent applications within 18 months after the filing date (see Johnson and Popp (2003), Graham and Hegde (2015), and Hegde and Luo (2016) for a detailed description of the event). Prior to this legal change, information about patents became public only after they were granted. Firms could therefore delay revealing the content of their patents without losing intellectual property protection. In contrast, AIPA imposed a maximum delay time of 18 months, even for patents that were not granted eventually. We recognize that in the pre-AIPA era, industries differed in the time lag between patent applications and grant dates. Thus, we define the cross-sectional intensity of AIPA's passage based on this delay. We argue that

industries with the longest lag between application filing and patent disclosure before AIPA were most heavily affected by its passage. For the validity of our identification strategy, any such pre-AIPA delay measure must not be – and we, in fact, show that it is not – correlated with cross-industry variation in access to finance or other characteristics that might influence banking relationships in other ways than through innovation disclosure.

After controlling for shocks to firm-level demand and bank-level supply of loans, we find that firms in industries that were affected more heavily in their time to innovation disclosure following AIPA were significantly more likely to break up their existing banking relationships and switch to other lenders. This suggests that after the publicity of firms' innovation increases, the value of formerly private information in banking relationships drops, thereby allowing firms to switch lenders who are no longer at an informational disadvantage compared to the incumbent lender. We show that this effect is especially pronounced for firms that issued non-zero patents in the pre-AIPA period, and for firms that operated out of states with weaker protection of trade secrets.

We furthermore provide evidence that higher innovation disclosure under AIPA reduced patenting in general, suggesting that firms face a trade-off between patenting and secrecy. Thus, AIPA forced innovation disclosure at a level that firms would not have supported otherwise, but they in return gained the ability to switch lenders. This gives rise to the possibility that deeper banking relationships are associated with less innovation disclosure, by tipping the trade-off in favor of secrecy, rather than patenting. By providing evidence for this trade-off, we fathom whether innovation disclosure interacts with the level of private information in banking relationships.

Against this background, we rely on our second empirical setting, and test the impact of increased lender informedness on firms' patenting behavior. Banks have incentives to produce information about firms, which, in turn, affects firms' own disclosure decisions. Such incentives and ability of banks to produce information are also related to the type of relationship they have with firms. For instance, banks of wide scope, such as universal banks, have more means of generating information about their borrowers, operationalized through

cross-marketing of loans and underwriting services.

To capture this empirically, we use bank-scope-expanding mergers between commercial, or already existing universal, banks and investment banks as a shock to lender informedness. This enables us to scrutinize changes in the disclosure behavior of firms that transacted with a loan-granting commercial bank and also received an underwriting product from an investment bank, both of which have merged – either with each other (treatment group) or with other banks of complementary scope (control group). We find that when banks accumulate information about their borrowers through both previous loan and non-loan transactions, firms patent less, while their actual level of innovation – as measured by R&D and related expenditures as well as new-product announcements – is unaffected.

To the best of our knowledge, this paper constitutes the first comprehensive empirical analysis of the interplay between banks' potential for information acquisition and corporate-innovation disclosure. In doing so, our paper relates to the literature on how banks produce information about firms and, thereby, mitigate informational asymmetries. Banks learn about borrower firms through screening and monitoring activities (Ramakrishnan and Thakor (1984), Diamond (1984), Allen (1990), Winton (1995), Dass and Massa (2011)), and they are likely to learn even more if they provide multiple services to the firm (Boot (2000), Degryse and Van Cayseele (2000), Neuhann and Saidi (2016)).

The empirical literature has focused on relationship lending as one way how banks' information about a firm and its reusability interact with firms' financing decisions (see Houston and James (1996) for evidence on public firms, or Boot (2000) for a more extensive summary). Our paper suggests that banks' information acquisition affects the public information that firms release to markets, and in reverse, when such public information is made more available, firms can more easily break up existing relationships. As we posit that the value of private information between lenders and borrowers governs firms' ability to switch lenders, our paper connects with Rajan (1992), who argues that banks' private information can lead to greater hold-up. By testing this claim, we provide empirical evidence on the stability and duration of banking relationships, as discussed in Ongena and Smith (2001), Ioannidou and

Ongena (2010), and Gopalan, Udell, and Yerramilli (2011).²

Furthermore, we contribute to the literature on how the development of the financial sector affects firms' patenting decisions (Benfratello, Schiantarelli, and Sembenelli (2008); Amore, Schneider, and Žaldokas (2013); Chava, Oettl, Subramanian, and Subramanian (2013); Cornaggia, Mao, Tian, and Wolfe (2015); see also Kerr and Nanda (2014) for an extensive survey of the literature). These papers have largely focused on how banking development affected firm-level innovation strategies as captured by new patent grants.

Some of these papers come to seemingly conflicting conclusions. For instance, while Amore, Schneider, and Žaldokas (2013) find a positive effect of interstate banking on patent counts, Cornaggia, Mao, Tian, and Wolfe (2015) find that the subsequent interstate-branching deregulation led to fewer patents. Under both deregulations, credit-supply effects are typically assumed to have positive effects for firms seeking to finance innovation. This may, however, not be captured by patent counts if patents serve additional purposes that could interact with the nature of the banking deregulation under consideration.

Some recent papers have highlighted that patents might have an additional role on top of recording firm-level innovation. For instance, Mann (2014) argues that patents can act as collateral for loans. Chava, Nanda, and Xiao (2015) also show that certain facets of patents, namely increased patent protection and creditor rights over collateral, result in cheaper loans. We uncover a supplemental, reverse channel through which credit affects patenting, building on the idea that patents constitute a credible signal for the quality of otherwise hard-to-observe innovation (cf. Bhattacharya and Ritter (1983) and Francis, Hasan, Huang, and Sharma (2012)).

Kerr and Nanda (2014) acknowledge the increasingly important role of bank finance (and debt) for innovation, hinting at the relevance of financial contracting even among mature firms. While the level of asymmetric information is typically assumed to be low between

² Typically, the duration of banking relationships is used as a measure of their strength, which has been shown to positively affect credit availability (Petersen and Rajan (1994), Berger and Udell (1995)). Instead, we consider the stability of banking relationships as an outcome resulting from the value of private information.

banks and publicly listed firms, such as those under scrutiny in this paper, innovation is among the most uncertain types of investments undertaken by these firms. We show that there is value attached to information acquisition about public firms in lending relationships, which speaks to the monitoring channel of bank finance.

In particular, the kind of monitoring mechanism we consider is specific to large universal banks that reap informational economies of scope across loans and non-loan products. In this manner, our paper specifies, and further differentiates, the role of bank finance for innovation, compared with studies on the (typically equity) financing of early-stage firms which do not continuously develop a portfolio of innovations but, instead, are entirely characterized by a single innovation, namely their product (see, for instance, Bernstein, Giroud, and Townsend (2016)). However, as far as the main idea of our paper is concerned, our findings should be even stronger for firms with greater information asymmetry – such as early-stage firms – seeking private equity capital.

Lastly, our paper also relates to studies on voluntary disclosure and proprietary costs in disclosing information. In testing the hypotheses generated by a voluminous theoretical literature (e.g., Darrough (1993), Gigler (1994), Evans and Sridhar (2002), Ganglmair and Oh (2014)), empirical work faces the challenge that most of firms' public disclosure might have limited proprietary costs. We consider a case where such proprietary costs are significant, namely firms' trade-off between patenting their innovation and keeping it secret (Moser (2005) and Moser (2012)). In a related paper, Dass, Nanda, and Xiao (2015a) analyze firms' stock liquidity as an additional concern that might encourage firms to patent a larger stock of their knowledge. In contrast, we show how firms' relationships with their creditors govern their decision to patent existing innovation.

The remainder of the paper is organized as follows. In Section 2, we discuss our identification strategies, and describe the data. Our results for the effect of AIPA on the stability of banking relationships, and the impact of banks' information acquisition on firms' patenting behavior are in Section 3, and Section 4 concludes.

2 Empirical Strategy and Data

In the following, we provide background information on AIPA, information acquisition in universal banking, and our associated identification strategies. Then, we will describe the data that we use on innovation and banking relationships.

2.1 American Inventor's Protection Act of 1999

To pin down the interplay between firms' public-information production and banks' private-information acquisition, we look at how a shock to firms' public-information disclosure in the form of patent applications alters their relationships with existing lenders. Such lending relationships are characterized by costly private-information acquisition and monitoring. As argued by Rajan (1992), such relationships can also lead to hold-up by banks. Once formerly private information about a firm is revealed publicly, the incumbent bank partly loses the advantage that it had in financing the firm due to its previously undertaken information acquisition. We posit that an increase in publicly available information about a firm's innovation leads to a potential break-up of existing bank-firm relationships, as other banks become comparatively more competitive in financing the firm.

As a shock to the proportion of information on firm-level innovation that is public, rather than private, we use the passage of AIPA. Historically, inventing firms were allowed to keep their U.S. patent applications secret until the final patent was granted – in theory, for up to 20 years (Graham and Hegde (2015)) – a practice known as "submarine patenting." Firms could, thus, avoid revealing the content of their patents publicly without losing intellectual property protection (but losing licensing income). On the other hand, they could still signal this information privately to financiers. AIPA came into effect on November 29, 2000, and harmonized U.S. patent laws with the rest of the world by requiring public disclosure of patent applications 18 months after the filing day, even if the patent is not granted.³

³ Firms were still able to opt for secrecy by completely foregoing foreign patenting. As shown by Graham and Hegde (2015), only a small proportion – one-digit percentage – of inventors decided to do so.

Arguably, prior to 1999, firms differed in the secrecy of their patent applications. One particular consideration in whether firms keep innovation secret or make it public is the proprietary cost of rivals obtaining certain technical knowledge (Hall, Helmers, Rogers, and Sena (2014)).⁴ This is especially true if the patent is not granted eventually, in which case the firm neither receives the intellectual property protection, nor keeps the knowledge inhouse. Industry conditions are then likely determinants of firms' decision whether to patent or to keep their innovation secret.

We estimate the average time lag between patent applications and their grant dates (when their content was made public) for each SIC2 industry over five years during the pre-AIPA period from 1996 to 2000. We use the industry-level average lag to capture both the actual delay for firms that filed for patents in that period and the potential delay for firms that did not.⁵ The longer the lag, the more likely the industry standard was to keep patent applications secret for a longer period of time. Alternatively, such delays may have been due to non-strategic reasons, such as technical complexities in the patent-review process in a given industry. Either way, public-information disclosure was delayed. Indeed, Graham and Hegde (2015) also report some heterogeneity in terms of inventors' disclosure choices across technology fields. For instance, they show that computers and communication technologies were more likely than drugs and chemicals to use pre-AIPA secrecy for strategic reasons such as cross-licensing, fencing, litigation, and submarine patenting. As displayed in the top panel of Table 1, the average delay across different industries is 26 months, and none of the industries under consideration has a mean delay below 18 months.

Based on this premise, we define the cross-sectional intensity of AIPA's passage based on the time lag between patent applications and their grant dates in the firm's industry. We argue that industries with the longest lag were most affected by the passage of the law, which imposed the maximum delay time of 18 months. Importantly, this delay measure

⁴ For instance, if a patent is granted, it protects an invention only in the jurisdiction in which it was granted. The published patent is visible, however, outside of jurisdictions where the patent is in force. Thus, the invention could be legally imitated and used in jurisdictions where the patent is not in force.

⁵ All results hold up to using firm-level delays as our treatment measure for the subsample of firms that filed for patents in the pre-AIPA period, or a delay measure based on the technological fields of firms' patents as in Graham and Hegde (2015).

is not meaningfully correlated with cross-industry variation in access to finance or other characteristics that might influence banking relationships directly or through other channels.

To show this, we run regressions at the SIC2 industry level, reporting both estimates from cross-sectional regressions, where we aggregate industry-level measures over time (top panel) as well as time-series regressions (bottom panel) in Table 2. In the first four columns of the top panel, the dependent variable is the mean difference in years between filing and grant dates, across all patents granted to publicly listed firms in the respective industry between 1996 and 2000. In the last four columns, we report the median difference instead of the mean. Similarly, independent variables are measured as their respective aggregate values from 1996 to 2000. In the bottom panel, the dependent variables in the first four and last four columns are, respectively, the mean and median differences in years between filing and grant dates, across all patents granted to publicly listed firms in the respective industry in a given year. Similarly, the independent variables reflect the respective annual values.

The first column reports the correlation between our SIC2-industry delay measure and international trade characteristics of the industry, namely its import as well as export penetration. Arguably, a firm's integration into global trade and openness to foreign competition could affect both its strategic decision to patent innovation as well as its banking relationships (see Manova (2013) and the survey by Foley and Manova (2015)). We measure import penetration as total imports over the total value of shipments plus total imports minus total exports in a given SIC2 industry, and export penetration as total exports over the total value of shipments in a given SIC2 industry. We find no relationship between our delay measure and import as well as export penetration.

Furthermore, we also consider the possibility that our delay measure may be correlated with the number of patents filed in a given SIC2 industry. For instance, one could argue that industries that patent heavily and are, thus, presumably more innovative could have shorter delays, as patent officers learn more about the respective technologies. These industries could also differ in their banking relationships (Amore, Schneider, and Žaldokas (2013); Chava, Oettl, Subramanian, and Subramanian (2013); Cornaggia, Mao, Tian, and Wolfe (2015)). In

the second column, we find no statistically significant correlation between our delay measures and the number of patents in the industry, suggesting that differences in patenting activity are unlikely to explain industry-level variation in the delay in disclosing patent information.

Additionally, in the third column, we consider the average total factor productivity in a given SIC2 industry, using the semiparametric estimation procedure by Olley and Pakes (1996). Industries with long delays in their patent grants are neither more nor less productive, again reassuring us that our measure does not capture a confounding industry characteristic.

Finally, in the fourth column, we use the financial dependence of industries, measured as the median value of financing needs across firms in a given SIC2 industry, as in Rajan and Zingales (1998). For each firm, the financing needs are measured as total capital expenditures minus total operating cash flows, over total capital expenditures. Again, we find no association with the delay measures.

Variation in firm-level innovation disclosure. We use this industry-level delay measure to capture variation in the intensity of treatment under AIPA. In particular, firms operating in industries associated with longer delays from filing to grant dates were affected more heavily by AIPA insofar as their innovations became public information relatively more quickly compared to the pre-AIPA regime.

To estimate the effect of AIPA on the stability of lending relationships, we build a panel of all bank-firm pairs (ij) with at least one loan within the previous five years leading up to AIPA (pre-period from 1996 to 2000) or within the first five years after AIPA (post-period from 2001 to 2005).⁶ In this manner, we yield two observations per bank-firm pair. For each observation, we measure either the total loan volume received by firm i from bank j, which serves as our measure of the intensive margin of lending relationships, or a mere indicator for non-zero loan volume, reflecting the extensive margin. This setup allows us to include not just bank-firm fixed effects, but also firm-year fixed effects to capture shifts in firm-level demand for loans across all banking relationships, and bank-year fixed effects to capture

⁶ In the Appendix, we also provide robustness checks for three-year and four-year windows around the implementation of AIPA.

shifts in bank-level supply across all firms contracting with the respective bank. Naturally, our industry-level treatment measure interacted with a post-AIPA dummy is captured by firm-year fixed effects. However, as we are interested in the development of pre-existing banking relationships, we interact our treatment measure, a post-AIPA dummy, and an indicator for whether a bank-firm pair ij already contracted in the pre-AIPA period. This gives us variation at the bank-firm-year level, and we run the following specification:

$$y_{ijt} = \beta_1 Treatment_i \times Initial \ relationship_{ij} \times Post_t$$
$$+\beta_2 Initial \ relationship_{ij} \times Post_t + \mu_{it} + \eta_{jt} + \theta_{ij} + \epsilon_{ijt}, \tag{1}$$

where y_{ijt} is the logged total loan volume or an indicator for non-zero loans at the bank-firm level for each period, $Treatment_i$ is defined at the industry level (based on SIC2 codes), and measures the mean difference in years between the filing date and the grant date, across all patents granted to publicly listed firms in the respective industry between 1996 and 2000, $Initial\ relationship_{ij}$ is an indicator variable for whether firm i received a loan from bank j anytime in the pre-period, and $Post_t$ is a dummy variable for the post-period from 2001 to 2005. μ_{it} , η_{jt} , and θ_{ij} denote firm-year, bank-year, and bank-firm fixed effects, respectively, where bank fixed effects are defined for all commercial and universal banks, and standard errors are clustered at the bank level.

The coefficient of interest, β_1 , varies at the ijt level and reflects a firm's propensity to break up an existing relationship, which in the above specification is equivalent to establishing a new banking relationship. To see this, assume that a firm broke up an existing relationship with bank A from which it borrowed \$500m in the pre-AIPA period and \$0 in the post-AIPA period. If the firm did not borrow from any bank in the post-AIPA period – in the extreme case, due to bankruptcy – then the effect should be explained entirely by firm-level demand and, thus, by the firm-year fixed effects μ_{it} .

That is, if a break-up is not accompanied by the establishment of a new relationship, then β_1 (and also β_2) should be zero. Now assume that the same firm borrowed \$300m from another bank B after AIPA. Then, we have a pre-AIPA and a post-AIPA observation for the firm with each bank: \$500m and \$0 from bank A as well as \$0 and \$300m from bank B. In this case, β_1 is negative. The extent to which β_1 is negative in the presence of firm-year fixed effects depends on the amount borrowed in the post-AIPA period. β_1 is more negative if the firm borrowed at least the same amount as before, \$500m, from the new bank, and less so if the firm borrowed less in the post-AIPA period. This is because μ_{it} captures such fluctuations in firm-level demand.

Theoretically, firms that patented in the pre-AIPA period should be affected more heavily by AIPA, which we test empirically. This is especially true if pre-AIPA patenting by firms indicates their propensity to patent in the post-AIPA period. As we argue that AIPA led to increased innovation disclosure when patenting, some firms may have reacted to this by patenting less in the post-AIPA period. However, firms without patents in the post-AIPA period are less likely to switch lenders, because for them the level of innovation disclosure is lower than prior to AIPA. Therefore, our effects for break-ups of banking relationships should be driven by firms that did not cease to patent because of AIPA, and this subsample of firms should be well represented by firms that were actively patenting in the pre-AIPA period.

This contingency on patenting implies that our previously discussed research design tests the impact of varying the *intensive margin of innovation disclosure*, namely the publicity of patent applications, on firms switching lenders, i.e., the *extensive margin of banking relationships*.

From an identification point of view, AIPA offers plausibly exogenous variation in innovation disclosure that enables us to identify the effect on banking relationships. With regard to the interpretation of such estimates, one faces, however, the open question as to why AIPA constitutes an important forced change in the disclosure of innovation-related information by patenters. First, AIPA could have led to greater disclosure of innovation because firms did not want to disclose more in the pre-AIPA period, so AIPA induced firms to reshuffle their banking relationships accordingly. Alternatively, firms faced significant constraints in disclosing their patents and innovation activity and, thus, AIPA relaxed such constraints.

Both channels would be consistent with the Rajan (1992) hypothesis that banks' private information enables them to hold up their borrowers, for which we provide evidence by showing that reducing private information through AIPA leads to break-ups of banking relationships and switching. The former channel is distinct from the latter, in that it implies that a trade-off between patenting and secrecy is important in banking relationships. Under said trade-off, firms would not deem it optimal to disclose as much as they need to after AIPA due to the product-market implications of the disclosure of patent applications.

Following Bhattacharya and Ritter (1983), this gives rise to the possibility that some innovating firms might prefer financing arrangements that do not require them to use patents as a costly signal for their innovation, allowing them to finance innovation without disclosing it publicly. A natural way to facilitate this would be through private-information acquisition in banking relationships, in contrast to public-information production through patents and AIPA. In the next section, we design and discuss an empirical test to shed light on the potential impact of varying the *intensive margin of banking relationships* through lender informedness on the *extensive margin of innovation disclosure*, i.e., firms' patenting behavior.

2.2 Bank-level Information Acquisition and Universal Banking

One determinant of the level of information asymmetry between lenders and borrowers could be the scope of bank-firm interactions. In particular, the stepwise repeal of the Glass-Steagall Act in the U.S. allowed commercial banks to become universal banks that could offer a wide array of financial instruments. The Glass-Steagall Act of 1933 originally imposed a separation of commercial banking (deposit taking and lending) and investment banking (especially underwriting of corporate securities). The first major step of the repeal took place in January and September 1989, which is when commercial banks were allowed to generate a certain proportion (10% in 1989) of their revenues through underwriting activities, including underwriting of corporate debt and equity, typically through so-called Section 20 subsidiaries.

However, there were still firewalls in place that separated the two activities, and did not allow universal banks to share non-public customer information across commercial-bank and securities divisions. The respective firewalls were abolished by the Federal Reserve Board in a second step on August 1, 1996. Simultaneously, the revenue limit on underwriting securities was raised from 10 to 25%, thereby allowing more commercial banks to expand into universal banking by directly merging with an investment bank.

As argued by Drucker and Puri (2005) and Neuhann and Saidi (2016), these measures improved universal banks' ability to efficiently provide external finance to firms through informational economies of scope across loans and non-loan products. For instance, a firm's downside is important for a credit analyst who is assessing a firm's quality as a borrower, whereas an equity-underwriting analyst tends to concentrate on a firm's upside when trying to justify its stock price for an initial public or seasoned equity offering.

Variation in bank-level information acquisition. We identify the impact of lender informedness off the variation in bank-scope-expanding mergers, i.e., between loan-granting commercial, or already existing universal, banks and underwriting investment banks. We estimate the following regression specification:

$$y_{it} = \beta_1 Loan \ from \ CB, \ underwriting \ from \ IB, \ both \ merged_{it}$$

$$+\beta_2 Loan \ from \ CB \ that \ merged_{it} \times Underwriting \ from \ IB \ that \ merged_{it}$$

$$+\beta_3 Loan \ from \ CB \ that \ merged_{it} + \beta_4 Underwriting \ from \ IB \ that \ merged_{it}$$

$$+\beta_5 Any \ loan_{it} \times Any \ underwriting_{it} + \beta_6 Any \ loan_{it} + \beta_7 Any \ underwriting_{it}$$

$$+\beta_8 X_{it} + \mu_i + \epsilon_{it}, \tag{2}$$

where y_{it} is an outcome variable at the firm-year level, Loan from CB, underwriting from IB, both $merged_{it}$ indicates whether anytime from t-10 to t-1, firm i received a loan from a commercial or universal bank, an underwriting product from an investment bank, and both banks merged with each other until year t, Loan from CB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received a loan from a commercial

or universal bank that merged with an investment bank thereafter, and $Underwriting\ from$ $IB\ that\ merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received an underwriting product from an investment bank that merged with a commercial or universal bank thereafter. Any $loan_{it}$ and $Any\ underwriting_{it}$ are indicator variables for whether firm i received any loan or any underwriting product, respectively, from any commercial, universal, or investment bank anytime from t-10 to t-1, X_{it} denotes other control variables measured in year t, including industry-year fixed effects, and μ_i denotes firm fixed effects. Standard errors are clustered at the firm-year level.

We use a time window of eleven years so as to accommodate the triplet of events (loan transaction, underwriting, and any mergers).⁷ Note that our ten-year window for the two transactions (loans and underwriting) starts in t-1, rather than t (the last possible year that we consider for a potential merger), so as to safeguard that both transactions took place before any potential merger of the two banks, rather than them being a result of the merger.

The coefficient of interest is β_1 , which estimates whether a firm that received a loan from a commercial or universal bank and an underwriting product (debt or equity) from a separate investment bank changed its behavior after the two respective banks have merged. This can be interpreted as an intention-to-treat effect insofar as said set of firms is likely to continue contracting with the surviving universal bank, which now has more information from previous loan and underwriting transactions. This is indeed reflected in our regression sample. Among firms in the treatment group, 50.9% (68.3%) returned to the merged universal bank for another loan (underwriting product) within five years after the merger, and in the control group, 52.1% (59.8%) returned to any one of the two universal banks involved in mergers for another loan (underwriting product). These ex-post probabilities are high, and remarkably similar despite the comparison between returning to one vs. two universal banks.

The main identifying assumption is that firms with previous loan transactions with commercial or universal banks and previous underwriting by investment banks – all of which merged with a bank of different scope (control group), but not necessarily with one another

⁷ In untabulated tests, we show that our results are robust to changing the time window for the triplet of events from eleven years to nine years.

(treatment group) – differ only in the degree of informedness of the resulting universal bank when dealing with the same firm in the future. The underlying rationale for our identifying assumption is that private-information acquisition by commercial/universal and investment banks is complementary, and that a merger between these two types of institutions is necessary for the resulting universal bank to realize informational economies of scope.

Furthermore, in Figure 1, we provide evidence of parallel pre-trends in terms of patenting behavior and R&D expenditures among our treatment and control groups in the period leading up to the merger(s) of commercial/universal and investment banks.

2.3 Data Description

We use the patent dataset of the National Bureau of Economic Research (NBER), which contains information on all patents awarded by the U.S. Patent and Trademark Office (USPTO) as well as citations made to these patents (Hall, Jaffe, and Trajtenberg (2001)). We match the NBER patent dataset with Compustat data for the period from 1987 to 2006, following the procedures laid out in Hall, Jaffe, and Trajtenberg (2001) and Bessen (2009).

As we analyze the possibility that patents are a way to disclose information, we wish to control for the actual level of corporate innovation. We measure inputs of the innovation process by firms' research and development (R&D).⁸ We also appreciate that not all inputs of the innovation process (e.g., CEO salaries) are recorded as R&D. As an alternative measure, we consider the sum of R&D and as well as selling, general, and administrative (SG&A) expenditures. Similarly, as some of the inputs in the innovation process (e.g., innovators' hardware) are recorded as investment into fixed assets, we also consider firms' capital expenditure and other assets.

In terms of outputs of the innovation process, we look at new-product announcements, following Mukherjee, Singh, and Žaldokas (2016). In constructing measures of new-product announcements, we combine textual analysis with event studies. We first search the Lex-

 $^{^8}$ We follow Koh and Reeb (2015) in that we replace missing values for R&D expenditures in Compustat by zeros if the respective firm is recorded to have issued zero patents in the NBER dataset.

isNexis news database for company press releases that are tagged under the subject "new products" and the headlines of which contain any keywords, or roots of words, such as "launch," "product," "introduce," "begin," or "unveil." From these press releases, we parse out firm ticker symbols and the date of the announcement. We only consider firms listed on NYSE, NASDAQ, or AMEX. Using this criterion, we obtain 98,221 unique press releases.

We next identify material information about new products among these press releases. The underlying idea is that if a press release containing our new-product keywords indeed refers to a major innovation, the stock market should respond to the news. Similar in spirit to Kogan, Papanikolaou, Seru, and Stoffman (2012), who estimate the value of patents by relying on stock-price reactions to patent grants, we calculate firms' stock-price reactions to measure the expected value of the product announcement.

We use event-study methodology by fitting a market model over the (-246,-30) period to yield the expected returns on the firm's stock, and then estimating cumulative abnormal returns over the (-1,1) day period around the announcement. After estimating abnormal returns, we are left with 56,797 announcements. To obtain the total number of material new-product announcements over the year, we either (i) count the number of positive cumulative abnormal returns around product announcements made by firms over the year, or (ii) count the number of announcements with cumulative abnormal returns above the 75th percentile in the sample (2.61%). We only consider positive abnormal returns to remove any product announcements that were not associated with new-product introductions.⁹

When we consider loans, our sample comprises syndicated loans issued by public firms from the DealScan database, where we focus on the lead arranger(s) to identify the relevant lender(s). We match the respective borrowers with data on corporate debt and equity underwriting mandates in SDC. Building on Neuhann and Saidi (2016), we generate unique bank identifiers for all banks across these datasets. This enables us to use the SDC M&A database, alongside any mergers that we record through a LexisNexis news search, to detect mergers between any two banks in our DealScan loan data and SDC underwriting data. In

⁹ For instance, these could be "delays in new product introductions" or "new product recalls."

this manner, we identify 150 bank-scope-expanding mergers between commercial, or already existing universal, banks and pure investment banks from 1990 to 2010.

Finally, in Tables 6 and 7, we rely on the distribution of firms' employees across different states. Here we exploit rich data at the parent-subsidiary level from the LexisNexis Corporate Affiliations database. This database contains the list of subsidiaries for all major publicly traded companies with U.S. headquarters since 1994, and currently provides data on more than 6,881 U.S. public parents and 154,247 subsidiaries.

Summary statistics. In the top panel of Table 1, we present summary statistics for our AIPA-based identification in Tables 4 to 7. In the middle panel, we present summary statistics for Table 3 and for our universal-banking-related identification in Tables 9 to 11, and in the bottom panel for our loans sample used in Tables 8 and 12. For the latter two panels, our sample starts in 1987 and ends in 2010, with the exception of the NBER patent data, which are available only until 2006.

Note that in the top panel, we record two observations per bank-firm pair. We have 8,110 such pairs without and 7,558 pairs with conditioning on the availability of loan-volume data in DealScan.¹⁰ Of these 8,110 bank-firm relationships, 65.8% – i.e., 5,339 – already existed in the pre-AIPA period. That is, one-third of bank-firm pairs came into existence only in the post-AIPA period. Of the 5,339 pre-existing relationships, 17.9% still existed in the post-AIPA period. This also explains the average sum of the loan indicator over both periods, as $0.179 \times 0.658 + 1 = 1.118$ (we condition on at least one loan transaction for any bank-firm pair, so the minimum value over both periods is 1 and the maximum is 2).

3 Results

In this section, we start off by presenting evidence that innovating firms face a trade-off between patenting and secrecy. Then, we turn to the estimation results of our two empirical settings. First, we use the American Inventor's Protection Act of 1999 (AIPA) as

 $^{^{10}}$ The sample drops to at most 7,511 pairs when merging our data with the NBER patent dataset.

an exogenous variation in the disclosure of patent applications. By estimating the effect of AIPA on the stability of lending relationships, we investigate whether the subsequently (more) public information about firms' innovation led to a decrease in the value of formerly private information between banks and firms. Second, we explore the reverse relationship, and use bank mergers as a source of variation in lender informedness. We show that banks' private-information acquisition weakens firms' incentives to use patents as a signal for the quality of their innovation. Conversely, we find no such negative effects on other measures of innovation activities and related expenditures.

3.1 Trade-off between Patenting and Secrecy

The importance of the trade-off between patenting, thereby disclosing innovation-related information to the public (in particular competitors), and secrecy in financing relationships has been discussed, for instance, by Bhattacharya and Ritter (1983).¹¹ In the following, we establish that the trade-off between patenting and secrecy indeed exists in our sample. This evidence acts as a building block for our further analysis, and demonstrates that this trade-off allows us to estimate the interaction of innovation disclosure with banking relationships.

First, in Table 3, we use our sample from 1987 to 2006 to build a firm-level panel of patents in conjunction with our treatment variable, based on industry-level delays from 1996 to 2000, to test whether AIPA had a negative effect on firm-level patenting. As argued by Aoki and Spiegel (2009), the disclosure of innovation-related information in the course of patent publication constitutes a cost of patenting. One might note that AIPA could simultaneously have led to an increase in the benefits of patenting: for example, the importance of a patent publication increased due to a reduction in search costs of identifying licensees, which facilitated better comparison and evaluation of licensors' technology. We find that the interaction effect Treatment $(AIPA)_i \times Post_t$ is negative and significant in the first column. This reflects the idea that some firms may have patented less because of the disclosure costs imposed by AIPA.

 $^{^{11}}$ A similar point is made by Bhattacharya and Chiesa (1995) as well as Yosha (1995).

We also adopt an alternative identification strategy based on the passage of the Inevitable Disclosure Doctrine (IDD). IDD was targeted at employees who possess knowledge of a firm's trade secrets, and restricted their ability to take up similar assignments at rival firms. Thus, the adoption of IDD by state courts enhanced the protection of trade secrets for firms located in the respective states, as it reduced the risk that a firm's departing employees could reveal its trade secrets to industry rivals (see Klasa, Ortiz-Molina, Serfling, and Srinivasan (2015) for more information). Due to the protection of trade secrets under IDD, firms should have opted for keeping innovation secret and patenting less even before AIPA came into effect.

In the second column of Table 3, we use the staggered timing of the adoption of IDD, IDD_{it} , as our identifying variation, and again find a significantly negative effect on patents issued by firms with headquarters in states with IDD. Our estimate holds up to including both IDD_{it} and Treatment $(AIPA)_i \times Post_t$ as explanatory variables in the third column.

Finally, in the last column, we study whether IDD had an effect on the delay between patent filing and grant time, before AIPA came into effect. We use a firm-level equivalent of our pre-AIPA delay measure as dependent variable, for the sample of firms that patented before AIPA. In this manner, we find that even when firms patented in states with IDD, their patents were granted with (potentially strategic) 2.7% longer delays in the period leading up to AIPA. This attests to firms' preference for secrecy even when they opted to patent.

3.2 Effect of AIPA and Innovation Disclosure on the Stability of Lending Relationships

We now turn to analyzing the effects of AIPA and its combination with IDD on firms' lending relationships. First, we graphically illustrate our main result, namely the break-up of lending relationships for firms in industries that were affected more heavily by AIPA. We proceed as follows. In Figure 2, we plot the total loan volume across *all* banking relationships. Separately for the pre- and post-AIPA period, we split up these banking relationships into

loans from new and pre-existing relationships.¹² Pre-existing relationships are determined anytime within the previous five years for each one of the pre-AIPA years (from 1996 to 2000). In the post-AIPA period, pre-existing relationships are determined within the fixed pre-AIPA period, which implies that break-up rates are directly comparable in 2000 (before AIPA) and 2001 (after AIPA). This is to test our conjecture that AIPA led to a deterioration of the value of private information acquired by banks prior to AIPA.

In the top panel, we plot these graphs for firms in the top quintile of the distribution of our (pre-AIPA) delay measure, i.e., the SIC2-industry-level mean difference between the filing date and the grant date. Top-quintile firms should have been treated more heavily by AIPA. In the bottom panel, we plot the same graphs for firms in the bottom quintile of said distribution. With the exception of 1999 for firms in the treatment group, in the pre-AIPA period, firms tended to borrow more from banks with whom they had pre-existing relationships. This is reversed after the implementation of AIPA, and more so for the treatment group than for the control group. In the treatment (control) group, total loan volume generated from new relationships falls short of that generated from pre-existing relationships by -18% (-7%) in 2000, whereas loan volume from new relationships rapidly surpasses that generated from pre-existing relationships by +58% (+17%) in 2001.

While in general, firms borrowed more from new relationships after AIPA, they did so relatively more often in the treatment group than in the control group. Visually speaking, the two dotted lines are closer in the bottom panel than in the top panel. In fact, total loan volume generated from new relationships exceeds that generated from pre-existing relationships by 58%, 185%, 257%, 210%, and 769% in the years 2001 to 2005, respectively, for the treatment group compared to 17%, 153%, 187%, 166%, and 269% for the control group. Note that for both groups, total loan volume generated from new relationships tends to be higher after AIPA because of the time-invariant definition of pre-existing relationships in that period.

Furthermore, firms in treatment and control industries exhibit a similar evolution of total

 $^{^{12}}$ As in our regressions, we filter out any firm-level demand effects by conditioning the definition of pre-existing relationships on the existence of any loans in the respective period of said relationships.

loan volume – in terms of levels and slopes – across both panels in Figure 2. As AIPA should only affect firms that do not rely entirely on secrecy, we also test whether the effect is more pronounced for firms that issued non-zero patents in the pre-AIPA period. As can be seen in Figure 3, the effect is indeed stronger for patenting firms.

We now discuss our econometric estimates for the graphs that we have just discussed. As described in Section 2.1, we yield two observations for each bank-firm pair (ij). We record all bank-firm pairs with at least one loan within the previous five years leading up to AIPA (pre-period from 1996 to 2000) or within the first five years after AIPA (post-period from 2001 to 2005). Our continuous treatment variable is the mean delay from filing to patent grant in years, which varies at the SIC2-industry level. After controlling for bank-firm, bank-year, and firm-year fixed effects, our estimated treatment effect is the triple interaction between our delay measure, an indicator for whether firm i transacted with bank j in the pre-AIPA period, and an indicator for the post-AIPA period.

In Table 4, we run specification (1), where we use as dependent variable the log of the total volume of all loan transactions per period between firm i and bank j, which reflects the intensive margin of lending relationships. The treatment effect in the first column is given by the coefficient on $Treatment_i \times Initial \ relationship_{ij} \times Post_t$. In the second column, we test whether the treatment effect is stronger for firms that patented in the pre-AIPA period. Both effects are negative and significant at the 1% level, thereby indicating significantly more break-ups of lending relationships among treated firms.

Note that we include bank-firm pairs with non-zero loans in the pre-AIPA period, the post-AIPA period, or both, while controlling for firm-year fixed effects. In this way, the triple interaction $Treatment_i \times Initial \ relationship_{ij} \times Post_t$ allows us to estimate a negative treatment effect for firms with pre-existing relationships, which in this setting is equivalent to firms switching lenders, rather than firms reducing their demand for loans. This is because any shocks to firm-level demand for loans $across\ all\ banking\ relationships$ would be captured by firm-year fixed effects.

We perform a number of robustness checks. First, we verify the nonexistence of any

pre-trends, and conduct a placebo test by shifting the first year of the post-AIPA period forward by three years, namely from 2001 to 1998. This reduces the sample size somewhat, as there are fewer bank-firm pairs with non-zero loans in the pre- or post-AIPA period when the period is altered. As can be seen in the third column of Table 4, the treatment effect is much weaker than in the first column, and not statistically significant.

Furthermore, our baseline sample is limited to bank-firm pairs with at least one loan in either the pre- or the post-AIPA period. By controlling for firm-year fixed effects and, thus, any shocks to firm-level demand for loans, this allows us to identify firms that switched lenders. However, observed bank-firm pairs may be subject to a selection effect that might bias our estimates. To test for such selection, we enrich our sample by all theoretically possible bank-firm pairs, i.e., including those with zero transactions throughout, in the fourth column of Table 4, where our result is robust.

We continue with robustness checks in Table A.1. First, as can be seen in the first column, our results are robust to using the *median*, rather than the *mean*, SIC2-level delay from filing to grant date as our continuous treatment variable. Second, we vary the length of the time window around AIPA from five (as in our baseline regressions in Table 4) to four and three years in the second and third column, respectively. Our results are generally robust, but statistical significance is at times reduced because of the drop in sample size (for the same reason given above).

Finally, in the fourth column of Table A.1, we drop firms that were delisted for bankruptcy-related reasons anytime before the end of the estimation period in order to filter out break-ups of lending relationships due to corporate default. The estimates are virtually unaltered compared to our baseline estimates in the first column of Table 4. As bankruptcy-related reasons for observed break-ups of banking relationships are equivalent to a negative shock to firm-level demand, this further attests to the validity of our identification strategy, in that firm-year fixed effects fully capture such shocks.

In general, across Tables 4 and A.1, the coefficients for the treatment effect are large in absolute size. A potential reason for this is that the effect operates also at the extensive

margin, and the logarithm is not a good approximation for the growth rate when total loan volume drops to zero in the post-AIPA period. Therefore, we alternatively use as dependent variable an indicator for the occurrence of any loan transaction between firm i and bank j in a given period. We re-run the specifications from Tables 4 and A.1 with said dependent variable, and report the results in Tables 5 and A.2. All findings are robust.

Focusing on the main treatment effect, based on a standard deviation of 0.223 for $Treatment_i$ (see Table 1), the first column of Table 5 indicates that an increase in the pre-AIPA delay by one standard deviation is associated with $0.089 \times 0.223 = 2.0\%$ more break-ups. In the second column, this effect is magnified for patenting firms to $(0.406 - 0.015) \times 0.223 = 8.7\%$ more break-ups per one-standard-deviation increase.

We further study the heterogeneity of our treatment effect. As argued in Section 2.1, firms that patented in the pre-AIPA period should be – and, as we have just shown, have in fact been – affected more heavily by AIPA. This is because AIPA reduced patenting in general (cf. Table 3), so we expect that firms which did not patent in the pre-AIPA period due to secrecy concerns are less likely to start patenting after AIPA. We also investigate whether firms with particularly valuable patents, as measured by the average number of forward citations per patent across all patents issued by a given firm in the pre-AIPA period, were more likely to break up banking relationships. In the first column of Tables 6 and 7, we show that the treatment effect on both the intensive and extensive margin of lending relationships is indeed driven by particularly valuable patents. We add interactions with the total number of patents issued in the pre-AIPA period, and find that the negative treatment effect for highly cited patents is not explained by firms that patented more. Insofar as highly cited patents may reflect generally valuable innovation activities on the firm side, and assuming that firms that produced highly valuable innovation in the pre-AIPA period continued to do so in the post-AIPA period, these estimates could be interpreted as evidence that firms in treated industries were particularly likely to switch lenders when AIPA led to the disclosure of highly valuable innovation-related information.

In the last three columns of Tables 6 and 7, we exploit plausibly exogenous variation

in firms' patenting activity by accounting for the ease with which some firms were able to protect their trade secrets. To this end, we consider whether the firm's headquarters were located in a state where the courts recognized the Inevitable Disclosure Doctrine (IDD), which we introduced in Table 3.

As argued before, firms that did not patent should not have been affected by AIPA. Given our evidence in Table 3 that firms patented less following the adoption of IDD, we hypothesize that the treatment effect of AIPA on firms facing strong protection of trade secrets should be weaker. To test this, we measure the presence of IDD in a given firm's state in 1996, IDD_i . By 1996, the courts of 14 states have recognized IDD. We then compare whether the treatment effect of AIPA on lending relationships was weaker for firms that could more readily exploit trade secrets, i.e., for firms in states that have restricted key employee mobility through IDD.

Indeed, the coefficient on $Treatment_i \times Initial \ relationship_{ij} \times IDD_i \times Post_t$ is positive and significant in the second column of Tables 6 and 7. This suggests that firms in industries with longer delays, which should have been affected more heavily under AIPA, were significantly less likely to break up their lending relationships if they operated out of states that had adopted IDD.

We provide two robustness checks for this finding. First, in the third column of Tables 6 and 7, we define IDD_i based on an average IDD indicator across states weighted by firm i's distribution of employees in its subsidiaries across different states, as recorded in the LexisNexis Corporate Affiliations database. The corresponding data requirement reduces the sample size, but the interaction effect remains significant at least for the intensive margin of lending relationships in Table 6. Lastly, in the second column of Tables 6 and 7, we define $IDD_i = 0$ for three states – namely Florida, Michigan and Texas – that eventually rejected IDD after its adoption. These states dropped IDD relatively soon after AIPA – from 2001 to 2003 – so by redefining $IDD_i = 1$ for these three states, we should yield a weaker interaction effect compared to the second column. This is indeed the case, as can be seen in the last column of Tables 6 and 7, where the respective interaction effect is not just smaller in size,

but also less significant.

We further scrutinize whether firms in treated industries also profited from lower cost of debt, in line with Ioannidou and Ongena (2010). In Table 8, we use loan-level data and the same difference-in-differences strategy as in Table 3. To be consistent with our construction of the AIPA sample, we always include firm fixed effects so as to identify the treatment effect off firms that received multiple loans.

In the first column, we find a significantly negative treatment effect on firms' cost of debt. This effect is driven primarily by firms that patented in the pre-AIPA period, as one can see in the second column. In the last column, we split up the difference-in-differences estimate by whether the post-AIPA loan in question was granted by a bank with which the firm had a relationship in the pre-AIPA period from 1996 to 2000. The coefficient on the respective triple interaction is positive and significant. However, the sum of the coefficients on $Treatment_i \times Post_t$ and $Treatment_i \times Initial\ relationship_{ij} \times Post_t$ is significant at the 4% level. That is, while firms that keep their previous relationship receive significantly higher treatment-induced interest rates than firms that switch, they are still offered lower interest rates by their incumbent banks thanks to the treatment.

We finish the presentation of our AIPA-based evidence by examining whether firms in treated industries raised more capital from public markets after the increase in disclosure of innovation-related information. Presumably, since the initial informational advantage of incumbent lenders decreased, it has become easier for firms not only to switch to other private lenders but also to reach out to public capital markets. To shed light on this, we construct measures of public issuances of equity and debt from the SDC dabatase, where for each firm we record the total principal amount of equity and debt raised over a year, compared to loan financing. Our results are reported in Table A.3, and indicate that firms in treated industries indeed raised more capital in public markets (first column). The effect amounts to more than one-quarter of a standard deviation, and is driven primarily by debt (second column) rather than equity issues (third column).

3.3 Effect of Information Acquisition by Universal Banks on Firmlevel Patenting and Innovation

The evidence in Tables 3, 6, and 7 is consistent with innovating firms facing a trade-off between patenting and secrecy. The existence of such a trade-off also sheds light on the mechanism underlying our AIPA results for the effect of the intensive margin of innovation disclosure on the extensive margin of banking relationships. Namely, it implies that the gained ability to switch lenders came at the cost of suboptimal innovation-disclosure levels imposed by AIPA.

This opens up the possibility that relationships with banks that allow firms to innovate without disclosing information to the public are associated with greater stability. Against this background, we next turn to scrutinizing whether deeper banking relationships, which plausibly imply greater stability, induce firms to patent less. Put differently, we test the effect of the intensive margin of banking relationships on the extensive margin of innovation disclosure, i.e., firms' patenting behavior. In particular, our measure for the intensive margin of banking relationships is increased lender informedness of universal banks. We use the variation in mergers between commercial/universal and investment banks to provide causal evidence that complementary information acquisition from lending and underwriting activities by universal banks reduces firms' incentives to patent their innovation.

To this end, we estimate (2), and present the results for firms' patenting behavior in Table 9. In this setting, treatment and control differ only in whether their previous contracting partners – commercial/universal and investment banks – merged with each other, rather than with other banks of complementary scope. The treatment effect is captured by the coefficient on Loan from CB, underwriting from IB, both merged_{it}, and reflects the intention-to-treat effect of informed relationship banking on firms' patenting behavior. In particular, treatment and control firms should not differ in their extent to which they would profit from intellectual property rights or any other benefits of patents, except for the signaling value that patents have for the particular bank-firm relationship under consideration.

In the first column, we find that firms issued 23.6% fewer patents. In the second column, we consider the possibility that firms may be cutting back on low-quality patents. This is, however, not the case, as can be seen in the first column, where we use as dependent variable the total number of forward citations across all patents. Treated firms' patents are associated with significantly fewer citations, so our negative treatment effect pertains also to high-quality patents. In the last two columns, we investigate whether treated firms stopped patenting altogether, or whether they only cut back on patenting. In the third column, we find no effect on an indicator for whether a given firm issued any patents. Instead, in the last column, we find a significantly negative treatment effect on the number of patents even after conditioning on years in which firms issued non-zero patents, implying that treated firms did not stop patenting.¹³

To show that treated firms did not patent less because they became less active in terms of their innovation, we consider a battery of measures that should reflect inputs and outputs of the innovation process. In Table 10, we find no effect on R&D expenditures or the sum of R&D and SG&A expenditures. We find a positive effect on one of our measures of the number of new-product announcements.¹⁴

Furthermore, in the first column of Table 11, we even find a *positive* effect on capital expenditure. In the remaining three columns, we test whether the negative treatment effect on patents may hold generally for any class of collateralizable assets, because patents may be used as collateral in loan agreements (Mann (2014)). However, we find only *positive*, and no negative, treatment effects on assets as well as property, plant, and equipment.¹⁵

All regressions include industry-year fixed effects, which capture time-varying factors

¹³ Note that in untabulated tests, all patent-related results are robust to excluding all observations after the year 2003 (as motivated by Dass, Nanda, and Xiao (2015b)).

¹⁴ A positive effect on new-product announcements is consistent with our results on patents. If there is less information about a firm's innovation activities in general, any announcement about new-product development should be greeted with a larger stock-price reaction. In untabulated tests, our findings are robust to replacing our measures of new-product announcements by the sum of all positive cumulative abnormal returns around product announcements made by firms over the year, which is designed to capture the total incremental value of all new product introductions by a firm during the year.

A positive treatment effect on these outcome variables is consistent with our intuition that after combining information from underwriting and lending, universal banks possess more information about their borrowers. This, in turn, spurs lending by universal banks to fund capital expenditures.

underlying banks' considerations to merge with each other, such as the nature of client portfolios, as well as other industry-level shocks, e.g., AIPA. What is more, all insights hold up to including state-year effects (leading to a drop in the sample size due to data availability), which capture any confounding effects of, for instance, IDD. The respective results are in Tables A.4, A.5, and A.6.

The evidence so far suggests that universal banks do not require firms to patent in order to signal the quality of their otherwise hard-to-observe innovation. Based on our empirical setup, we conjecture that this is due to universal banks' private-information acquisition. Finally, we investigate a competing explanation, other than increased lender informedness, for the treatment effect of universal-bank mergers on patents. Namely, firms' budgets may be adversely affected by deeper banking relationships, as universal banks potentially extract more rents from their borrowers, e.g., by charging higher interest rates for their loans. This could, in turn, impede firms' ability to afford costly patents. Against this background, we scrutinize any changes in interest rates paid by firms after universal-bank mergers.

In Table 12, we focus on the loans sample, as in Table 8. Note that these loans were granted to treatment and control firms after the corresponding universal-bank mergers, and they need not necessarily have been originated by the same (commercial or universal) banks. We find no treatment effect on charged interest rates in the first column. In the second and third column, we, instead, find that treatment firms receive shorter-term loans, and are less likely to receive loans associated with any financial covenants, reflecting more flexible contracting. In the last column, however, we fail to estimate any differential effect for treatment and control firms in terms of whether loans were secured by collateral.

Altogether, we find no negative effects on various measures of innovation, and no effects on charged interest rates either, in the presence of our negative treatment effect on patenting. The evidence speaks to our proposed channel that firms' incentives for signaling the quality of their otherwise hard-to-observe innovation decrease after a positive shock to the quality of banks' information about their borrowers.

4 Conclusion

Firms that innovate face a trade-off between patenting and secrecy. In this paper, we argue that this trade-off extends to financing relationships: while patents are a valuable signal about otherwise hard-to-observe innovation, they carry a significant cost as the associated level of innovation disclosure potentially enables competitors to obtain technical knowledge. We use this trade-off to relate fluctuations in the value of private information to the depth and stability of banking relationships that firms may use to finance innovation.

First, we test the impact of varying the intensive margin of innovation disclosure on firms switching lenders, i.e., the extensive margin of banking relationships. Following the passage of the American Inventor's Protection Act (AIPA), firms were forced to release their patent information earlier. Firms that were particularly affected by this shock – i.e., those in industries that had the longest delays between filing and grant dates during the pre-AIPA regime – were significantly more likely to switch lenders and receive cheaper credit. This implies that banks' private information is instrumental in maintaining bank-firm relationships.

We then consider the opposite side of the relationship, namely the impact of varying the intensive margin of banking relationships through lender informedness on the extensive margin of innovation disclosure, i.e., firms' patenting behavior. To this end, we use mergers between commercial, or already existing universal, banks and investment banks as a source of variation in lender informedness. We show that after universal banks are able to draw inference from loans and non-loan products, firms that had prior exposure to the merging banks file for fewer patents. That is, deeper relationships allow banks to rely more on soft information, so they require less hard information such as patents. Importantly, firms' inputs and outputs of the innovation process are not affected negatively by the same shock.

Our results suggest that switching costs in banking relationships might be endogenous to product-market-induced considerations of firms' innovation disclosure. Given that such switching costs are a potential constituent of a bank-lending channel in the transmission of monetary policy (Hubbard, Kuttner, and Palia (2002)) and the diffusion of financial shocks,

future research could study the welfare effects of the externalities created from interactions in information production in financial and product markets.

Building on our finding that innovating firms rely more on secrecy, rather than patenting, due to informed lending, another fruitful avenue for future research would be to shed light on the welfare implications and wider economic effects of the interaction between banking deregulation and innovation secrecy. For instance, innovation secrecy potentially constitutes an impediment to technological spillovers and ultimately economic growth. One implication of our results may, thus, be that economies with strong reliance on banking relationships may follow different growth paths than those with more developed public capital markets.

References

- ALLEN, F. (1990): "The Market for Information and the Origin of Financial Intermediation,"

 Journal of Financial Intermediation, 1(1), 3–30.
- Amore, M. D., C. Schneider, and A. Žaldokas (2013): "Credit Supply and Corporate Innovation," *Journal of Financial Economics*, 109(3), 835–855.
- Aoki, R., and Y. Spiegel (2009): "Pre-grant Patent Publication and Cumulative Innovation," *International Journal of Industrial Organization*, 27(3), 333–345.
- Benfratello, L., F. Schiantarelli, and A. Sembenelli (2008): "Banks and Innovation: Microeconometric Evidence on Italian Firms," *Journal of Financial Economics*, 90(2), 197–217.
- BERGER, A. N., AND G. F. UDELL (1995): "Relationship Lending and Lines of Credit in Small Firm Finance," *Journal of Business*, 68(3), 351–381.
- Bernstein, S., X. Giroud, and R. R. Townsend (2016): "The Impact of Venture Capital Monitoring," *Journal of Finance*, forthcoming.
- Bessen, J. (2009): NBER PDP Project User Documentation.

- Bhattacharya, S., and G. Chiesa (1995): "Proprietary Information, Financial Intermediation, and Research Incentives," *Journal of Financial Intermediation*, 4(4), 328–357.
- BHATTACHARYA, S., AND J. R. RITTER (1983): "Innovation and Communication: Signalling with Partial Disclosure," *Review of Economic Studies*, 50(2), 331–346.
- BOOT, A. W. (2000): "Relationship Banking: What Do We Know?," Journal of Financial Intermediation, 9(1), 7–25.
- Chava, S., V. K. Nanda, and S. C. Xiao (2015): "Lending to Innovative Firms," *UT Dallas Working Paper*.
- Chava, S., A. Oettl, A. Subramanian, and K. V. Subramanian (2013): "Banking Deregulation and Innovation," *Journal of Financial Economics*, 109(3), 759–774.
- CORNAGGIA, J., Y. MAO, X. TIAN, AND B. WOLFE (2015): "Does Banking Competition Affect Innovation?," *Journal of Financial Economics*, 115(1), 189–209.
- DARROUGH, M. N. (1993): "Disclosure Policy and Competition: Cournot vs. Bertrand," The Accounting Review, 68(3), 534–561.
- Dass, N., and M. Massa (2011): "The Impact of a Strong Bank-Firm Relationship on the Borrowing Firm," *Review of Financial Studies*, 24(4), 1204–1260.
- Dass, N., V. K. Nanda, and S. C. Xiao (2015a): "Intellectual Property Protection and Financial Markets: Patenting vs. Secrecy," *UT Dallas Working Paper*.
- ———— (2015b): "Truncation Bias in Patent Data: Does It Explain Why Stock-Liquidity Seemingly Reduces Innovation?," *UT Dallas Working Paper*.
- DEGRYSE, H., AND P. VAN CAYSEELE (2000): "Relationship Lending within a Bank-Based System: Evidence from European Small Business Data," *Journal of Financial Intermediation*, 9(1), 90–109.
- DIAMOND, D. W. (1984): "Financial Intermediation and Delegated Monitoring," Review of Economic Studies, 51(3), 393–414.

- DRUCKER, S., AND M. PURI (2005): "On the Benefits of Concurrent Lending and Underwriting," *Journal of Finance*, 60(6), 2763–2799.
- Evans, J. H., and S. S. Sridhar (2002): "Disclosure Disciplining Mechanisms: Capital Markets, Product Markets, and Shareholder Litigation," *The Accounting Review*, 77(3), 595–626.
- FOLEY, C. F., AND K. MANOVA (2015): "International Trade, Multinational Activity, and Corporate Finance," *Annual Review of Economics*, 7(1), 119–146.
- Francis, B., I. Hasan, Y. Huang, and Z. Sharma (2012): "Do Banks Value Innovation? Evidence from US Firms," *Financial Management*, 41(1), 159–185.
- Ganglmair, B., and J.-M. Oh (2014): "Strategic Secrecy of Pending Patents," *UT Dallas Working Paper*.
- GIGLER, F. (1994): "Self-Enforcing Voluntary Disclosures," *Journal of Accounting Research*, 32(2), 224–240.
- GOPALAN, R., G. F. UDELL, AND V. YERRAMILLI (2011): "Why Do Firms Form New Banking Relationships?," *Journal of Financial and Quantitative Analysis*, 46(05), 1335–1365.
- Graham, S., and D. Hegde (2015): "Disclosing Patents' Secrets," *Science*, 347(6219), 236–237.
- Hall, B., C. Helmers, M. Rogers, and V. Sena (2014): "The Choice between Formal and Informal Intellectual Property: A Review," *Journal of Economic Literature*, 52(2), 375–423.
- Hall, B. H., A. B. Jaffe, and M. Trajtenberg (2001): "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Paper No. 8498.
- HEGDE, D., AND H. Luo (2016): "Patent Publication and the Market for Ideas," *Management Science*, forthcoming.

- HOUSTON, J., AND C. JAMES (1996): "Bank Information Monopolies and the Mix of Private and Public Debt Claims," *Journal of Finance*, 51(5), 1863–1889.
- Hubbard, R. G., K. N. Kuttner, and D. N. Palia (2002): "Are There Bank Effects in Borrowers' Costs of Funds? Evidence from a Matched Sample of Borrowers and Banks," *Journal of Business*, 75(4), 559–581.
- IMROHOROGLU, A., AND S. TUZEL (2014): "Firm Level Productivity, Risk and Return,"

 Management Science, 60(8), 2073–2090.
- IOANNIDOU, V., AND S. ONGENA (2010): "'Time for a Change': Loan Conditions and Bank Behavior when Firms Switch Banks," *Journal of Finance*, 65(5), 1847–1877.
- JOHNSON, D. K. N., AND D. POPP (2003): "Forced out of the Closet: The Impact of the American Inventors Protection Act on the Timing of Patent Disclosure," RAND Journal of Economics, 34(1), 96–112.
- Kerr, W. R., and R. Nanda (2014): "Financing Innovation," Harvard Business School Entrepreneurial Management Working Paper No. 15-034.
- Klasa, S., H. Ortiz-Molina, M. A. Serfling, and S. Srinivasan (2015): "Protection of Trade Secrets and Capital Structure Decisions," *University of Arizona Working Paper*.
- Kogan, L., D. Papanikolaou, A. Seru, and N. Stoffman (2012): "Technological Innovation, Resource Allocation, and Growth," *NBER Working Paper No. 17769*.
- Koh, P.-S., and D. M. Reeb (2015): "Missing R&D," Journal of Accounting and Economics, 60(1), 73–94.
- MANN, W. (2014): "Creditor Rights and Innovation: Evidence from Patent Collateral," UCLA Working Paper.
- Manova, K. (2013): "Credit Constraints, Heterogeneous Firms, and International Trade," Review of Economic Studies, 80(2), 711–744.

- MOSER, P. (2005): "How Do Patent Laws Influence Innovation? Evidence from Nineteenth-Century World's Fairs," *American Economic Review*, 95(4), 1214–1236.
- ———— (2012): "Innovation without Patents: Evidence from World's Fairs," *Journal of Law and Economics*, 55(1), 43–74.
- Mukherjee, A., M. Singh, and A. Žaldokas (2016): "Do Corporate Taxes Hinder Innovation?," *HKUST Working Paper*.
- NEUHANN, D., AND F. SAIDI (2016): "Does Universal Banking Affect the Risk and Productivity of Firms?," Cambridge University Working Paper.
- OLLEY, G. S., AND A. PAKES (1996): "The Dynamics of Productivity in the Telecommunications Equipment Industry," *Econometrica*, 64(6), 1263–1297.
- ONGENA, S., AND D. C. SMITH (2001): "The Duration of Bank Relationships," *Journal of Financial Economics*, 61(3), 449–475.
- Petersen, M. A., and R. G. Rajan (1994): "The Benefits of Lending Relationships: Evidence from Small Business Data," *Journal of Finance*, 49(1), 3–37.
- RAJAN, R. G. (1992): "Insiders and Outsiders: The Choice between Informed and Arm's-Length Debt," *Journal of Finance*, 47(4), 1367–1400.
- Rajan, R. G., and L. Zingales (1998): "Financial Dependence and Growth," *American Economic Review*, 88(3), 559–586.
- RAMAKRISHNAN, R. T. S., AND A. V. THAKOR (1984): "Information Reliability and a Theory of Financial Intermediation," *Review of Economic Studies*, 51(3), 415–432.
- Winton, A. (1995): "Delegated Monitoring and Bank Structure in a Finite Economy," Journal of Financial Intermediation, 4(2), 158–187.
- YOSHA, O. (1995): "Information Disclosure Costs and the Choice of Financing Source," Journal of Financial Intermediation, 4(1), 3–20.

5 Figures

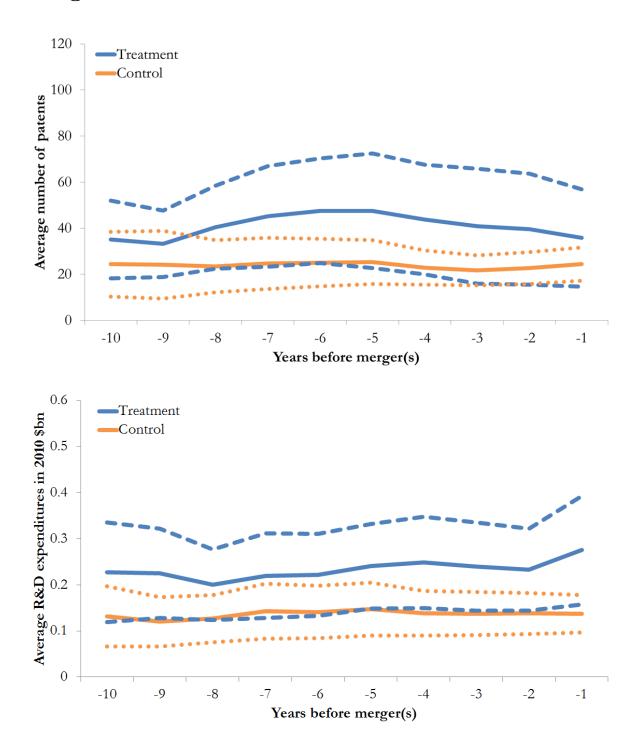


Figure 1: Pre-trends among Treatment and Control Firms Contracting with Universal Banks. The graphs in the top panel and the bottom panel plot, respectively, the average number of patents and the average research and development (R&D) expenditures by firms in the treatment and the control group over ten years. Firms in both groups received a loan from a commercial or universal bank as well as an underwriting product (debt or equity) from an investment bank anytime from year -10 to -1, and both banks merged with each other (treatment group) or with other banks of complementary scope (control group) in year 0.

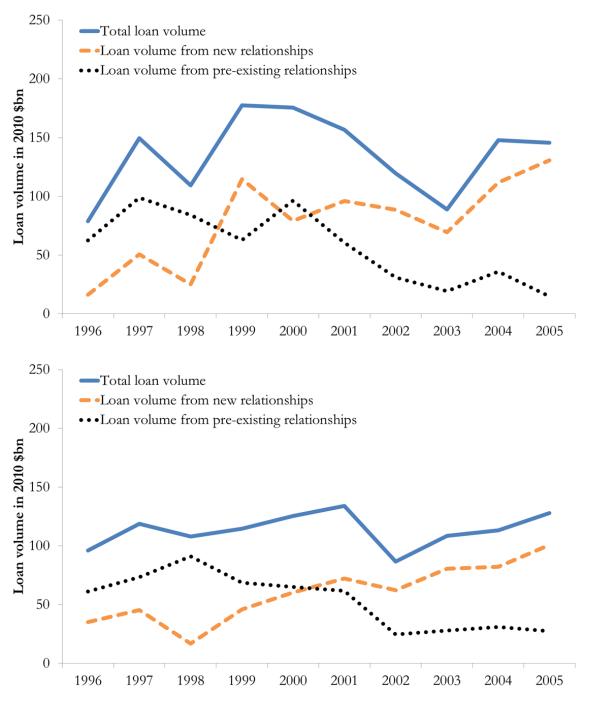


Figure 2: The Effect of AIPA on the Composition of Total Loan Volume: New vs. Old Bank Relationships (1996-2005). The two dotted lines add up to the solid line, i.e., total loan volume, and are defined by pre-existing relationships in the previous five years for each one of the pre-AIPA years (from 1996 to 2000), and in 1996 to 2000 for the post-AIPA period (from 2001 to 2005). The top panel comprises "treated" firms in the top quintile of the distribution of the mean difference between the filing date and the grant date across all patents granted to publicly listed firms in a given SIC2 industry between 1996 and 2000, whereas the bottom panel comprises "control" firms in the bottom quintile.

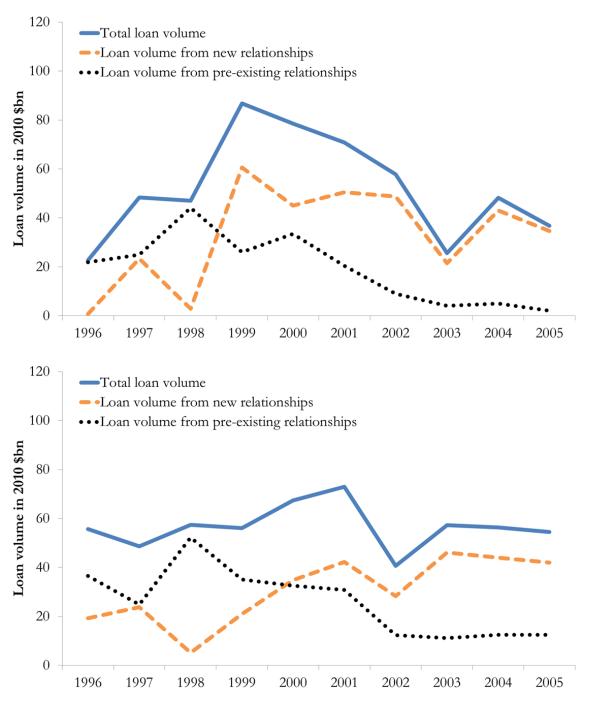


Figure 3: The Effect of AIPA on the Composition of Total Loan Volume for Patenting Firms: New vs. Old Bank Relationships (1996-2005). The sample is limited to firms that issued at least one patent in the pre-AIPA period from 1996 to 2000. The two dotted lines add up to the solid line, i.e., total loan volume, and are defined by pre-existing relationships in the previous five years for each one of the pre-AIPA years (from 1996 to 2000), and in 1996 to 2000 for the post-AIPA period (from 2001 to 2005). The top panel comprises "treated" firms in the top quintile of the distribution of the mean difference between the filing date and the grant date across all patents granted to publicly listed firms in a given SIC2 industry between 1996 and 2000, whereas the bottom panel comprises "control" firms in the bottom quintile.

6 Tables

Table 1: Summary Statistics

	· ·				
AIPA sample (bank-firm-period level,					
1996-2005 summarized as two periods)	Mean	Std. dev.	Min	Max	N
Number of bank-firm pairs					8,110
Number of firms					4,079
Number of banks					405
Loan indicator (sum over both periods)	1.118	0.323	1	2	8,110
Initial relationship in pre-AIPA period	0.658	0.474	0	1	8,110
Proportion of recurrent relationships	0.179	0.384	0	1	$5,\!339$
Patenting firm in pre-AIPA period	0.368	0.482	0	1	7,511
Total number of patents in pre-AIPA period	59.758	512.618	0	18,632	$7,\!511$
Average cites per patent in pre-AIPA period	2.263	4.965	0	89.3	$7,\!511$
Total loan volume per period in 2010 \$bn	0.376	1.456	0	38.525	15,116
Mean delay from filing to grant in years	2.201	0.223	1.656	2.778	64
(per SIC2 industry in pre-AIPA period)					
Median delay from filing to grant in years	2.048	0.225	1.656	2.726	64
(per SIC2 industry in pre-AIPA period)					
Compustat sample (firm-year level,					
1987 - 2010)	Mean	Std. dev.	Min	Max	N
Number of patents	12.136	92.279	0	4,344	61,242
Total cites of patents	91.860	806.595	0	$45,\!559$	61,242
Patenting $\in \{0,1\}$	0.369	0.483	0	1	61,242
Delay from filing to grant in years	2.008	0.743	0.299	20.079	11,554
(1987 - 2000)					
R&D expenditures in 2010 \$bn	0.086	0.495	0.000	14.434	76,819
R&D + SG&A expenditures in 2010 \$bn	0.574	2.564	0.000	79.347	69,814
New-product announcements	0.226	1.804	0	110	111,673
New-product announcements*	0.113	0.905	0	56	111,673
Capital expenditure in 2010 \$bn	0.188	1.116	0.000	45.078	109,604
Book value of assets in 2010 \$bn	2.861	16.162	0.000	866.122	111,669
Gross PP&E in 2010 \$bn	1.870	10.975	0.000	458.276	110,996
Net PP&E in 2010 \$bn	0.997	5.398	0.000	218.567	111,296
Loan from CB, underwriting from IB,	0.030	0.170	0	1	111,673
both merged $\in \{0,1\}$ (from $t-10$ to $t-1$)					
Loan from CB that merged $\in \{0, 1\}$	0.271	0.444	0	1	111,673
Underwriting from IB that $merged \in \{0, 1\}$	0.189	0.392	0	1	111,673
Loans sample (1987 – 2010)	Mean	Std. dev.	Min	Max	N
All-in-drawn spread in bps	186.888	137.695	0.700	1,490.020	16,858
Maturity in years	3.476	2.071	0.083	30.167	17,566
Covenant $\in \{0,1\}$	0.470	0.499	0	1	18,922
Secured $\in [0,1]$	0.732	0.442	0	1	12,373
Deal size/assets	0.275	0.476	0.000	39.604	18,922
Refinancing $\in \{0,1\}$	0.502	0.500	0	1	18,922
	- 7 -				- , = ==

Notes: The variables in the top panel correspond to the respective descriptions in Tables 4 to 7, those in the middle panel correspond to their descriptions in Tables 3 and Tables 9 to 11, and those in the bottom panel correspond to Tables 8 and 12.

Table 2: Correlation between Treatment and Other Industry Characteristics

Panel A: SIC2-industry cross section

	Mean delay	Mean delay	Mean delay	Mean delay	Median delay	Median delay	Median delay	Median delay
Export penetration	135.047				131.525			
	(124.258)				(113.655)			
Import penetration	-51.806				29.563			
	(68.311)				(65.070)			
Number of patents filed		-0.000				-0.000		
		(0.000)				(0.000)		
Industry productivity			293.335				232.444	
			(249.255)				(243.033)	
Financial dependency			,	13.297			•	-2.137
				(15.396)				(7.667)
N	20	58	54	53	20	58	54	53

Panel B: SIC2-industry-year panel

	Mean delay	Mean delay	Mean delay	Mean delay	Median delay	Median delay	Median delay	Median delay
Export penetration	-84.298				-245.577			
	(303.004)				(270.027)			
Import penetration	219.273				373.826***			
	(128.411)				(114.148)			
Number of patents filed		-0.002				-0.002		
		(0.002)				(0.002)		
Industry productivity			182.436				307.848*	
			(180.114)				(179.271)	
Financial dependency				-0.422				-0.490
				(0.467)				(0.731)
Industry FE	Y	Y	Y	Y	Y	Y	Y	Y
Year FE	Y	Y	Y	Y	Y	Y	Y	Y
N	280	725	666	694	280	725	666	694

Notes: Regressions are run at the industry level (based on two-digit SIC codes). The top panel displays cross-sectional regressions, and the bottom

panel displays time-series regressions, which include industry (based on two-digit SIC codes) as well as year fixed effects. In the top panel, the dependent variables in the first four and last four columns are, respectively, the mean and median differences in days between the filing date and the grant date, across all patents granted to publicly listed firms in the respective industry between 1996 and 2000. In the bottom panel, the dependent variables in the first four and last four columns are, respectively, the mean and median differences in days between the filing date and the grant date, across all patents granted to publicly listed firms in the respective industry in a given year. Independent variables are measured as sums from 1996 to 2000 in the top panel, and annually from 1996 to 2000 in the bottom panel. Export penetration refers to total exports over the total value of shipments in a given SIC2 industry. Import penetration refers to total imports over the total value of shipments plus total imports minus total exports in a given SIC2 industry. Number of patents filed is the number of patents filed in a given SIC2 industry. Industry productivity is the average total factor productivity in a given SIC2 industry from Imrohoroglu and Tuzel (2014). Financial dependency is measured as the median value of financing needs across SIC2 firms, as in Rajan and Zingales (1998). Financing needs is measured as total capital expenditures minus total operating cash flows, over total capital expenditures. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the industry level based on two-digit SIC codes) are in parentheses.

Table 3: Impact of AIPA and IDD on Firm-level Patenting

	1:	ln(Delay)		
Sample		1987 - 2006	5	1987 - 2000
Treatment (AIPA) \times Post	-0.110***		-0.091**	
	(0.042)		(0.044)	
Inevitable Disclosure Doctrine (IDD)		-0.044***	-0.043***	0.027***
		(0.010)	(0.010)	(0.010)
Controls	Y	Y	Y	Y
Firm FE	Y	Y	Y	Y
Year FE	Y	Y	Y	Y
N	61,242	52,015	52,015	11,554

Notes: The sample consists of all available observations from Compustat, the unit of observation is the firm-year level it. The dependent variable in the first three columns is the logged number of firm i's number of patents in year t. The dependent variable in the last column is the logged average delay between the filing date and the grant date for all patents applied for by firm i in year t. Treatment $(AIPA)_i$ is defined at the industry level (based on two-digit SIC codes), and measures the mean difference in years between the filing date and the grant date, across all patents granted to publicly listed firms in the respective industry between 1996 and 2000. $Post_t$ is a dummy variable for the post-AIPA period from 2001 onwards. Inevitable Disclosure Doctrine $(IDD)_{it}$ is defined at the state-year level, and is an indicator variable for whether firm i had its headquarter in a state that had adopted IDD by year t. Control variables are measured in year t, and include the log of firm i's sales and the log of its number of employees. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the firm-year level) are in parentheses.

Table 4: Impact of AIPA on Intensive Margin of Lending Relationships

	ln(1+Loan volume)				
Sample	Loan(s)	in pre- or pos	st-period	Full matrix	
			Placebo		
Treatment \times Initial relationship \times Post	-1.938***	0.254	-0.755	-1.112**	
	(0.677)	(0.791)		(0.527)	
Initial relationship \times Post	-26.999***	-31.575***	-29.561***	-13.054***	
	(1.526)	(1.712)	(1.566)	(1.391)	
Treatment \times Initial relationship \times Patenting \times Post		-7.159***			
		(2.411)			
Initial relationship \times Patenting \times Post		15.258***			
		(5.175)			
Bank-firm FE	Y	Y	Y	Y	
Bank-year FE	Y	Y	Y	Y	
Firm-year FE	Y	Y	Y	Y	
No. of bank-firm pairs	7,558	6,973	6,728	1,651,443	

Notes: All regressions are run at the bank-firm-period level (two observations per bank-firm pair). The sample in the first three columns is limited to bank-firm (ij) pairs with at least one loan within the previous five years leading up to AIPA (pre-period from 1996 to 2000) or within the first five years after AIPA (post-period from 2001 to 2005). Furthermore, as a placebo test, the sample in the third column is limited to bank-firm (ij) pairs with at least one loan in the pre-period from 1993 to 1997 or in the post-period from 1998 to 2002, whereas AIPA was implemented in late 2000. The sample in the fourth column comprises all theoretically possible bank-firm (ij) pairs, i.e., including those with zero transactions throughout. The dependent variable is the log of the total volume of all loan transactions between firm i and bank j, separately for the pre- and post-period. $Treatment_i$ is defined at the industry level (based on two-digit SIC codes), and measures the mean difference in years between the filing date and the grant date, across all patents granted to publicly listed firms in the respective industry between 1996 and 2000. Initial relationship; is an indicator variable for whether firm i received a loan from bank j anytime in the pre-period. $Post_t$ is a dummy variable for the placebo post-period from 1998 to 2002 in the third column, and for the post-period from 2001 to 2005 in all remaining columns. $Patenting_i$ is an indicator variable for whether firm i issued any patents in the pre-period. Bank fixed effects are defined for all commercial and universal banks. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the bank level) are in parentheses.

Table 5: Impact of AIPA on Extensive Margin of Lending Relationships

	Loan from bank $\in \{0,1\}$				
Sample	Loan(s)	in pre- or po	st-period	Full matrix	
			Placebo		
Treatment \times Initial relationship \times Post	-0.089***	0.015	-0.039	-0.067**	
	(0.027)	(0.038)	(0.032)	(0.026)	
Initial relationship \times Post	-1.439***	-1.669***	-1.584***	-0.695***	
	(0.067)	(0.083)	(0.078)	(0.066)	
Treatment \times Initial relationship \times Patenting \times Post		-0.406***			
		(0.102)			
Initial relationship \times Patenting \times Post		0.900***			
		(0.226)			
Bank-firm FE	Y	Y	Y	Y	
Bank-year FE	Y	Y	Y	Y	
Firm-year FE	Y	Y	Y	Y	
No. of bank-firm pairs	8,110	7,511	7,145	1,651,995	

Notes: All regressions are run at the bank-firm-period level (two observations per bank-firm pair). The sample in the first three columns is limited to bank-firm (ij) pairs with at least one loan within the previous five years leading up to AIPA (pre-period from 1996 to 2000) or within the first five years after AIPA (post-period from 2001 to 2005). Furthermore, as a placebo test, the sample in the third column is limited to bank-firm (ij) pairs with at least one loan in the pre-period from 1993 to 1997 or in the post-period from 1998 to 2002, whereas AIPA was implemented in late 2000. The sample in the fourth column comprises all theoretically possible bank-firm (ij) pairs, i.e., including those with zero transactions throughout. The dependent variable is an indicator for the occurrence of any loan transaction between firm i and bank j. Treatment_i is defined at the industry level (based on two-digit SIC codes), and measures the mean difference in years between the filing date and the grant date, across all patents granted to publicly listed firms in the respective industry between 1996 and 2000. Initial relationship_{ij} is an indicator variable for whether firm i received a loan from bank j anytime in the pre-period. $Post_t$ is a dummy variable for the placebo post-period from 1998 to 2002 in the third column, and for the post-period from 2001 to 2005 in all remaining columns. $Patenting_i$ is an indicator variable for whether firm i issued any patents in the pre-period. Bank fixed effects are defined for all commercial and universal banks. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the bank level) are in parentheses.

Table 6: Impact of AIPA on Intensive Margin of Lending Relationships – Quality of Pre-AIPA Patents and Inevitable Disclosure Doctrine (IDD)

	ln(1+Loan volume)				
Sample	\mathbf{L}	oan(s) in pre-	or post-perio	od	
IDD definition		$_{ m HQ}$	Employees	Reversals	
Treatment \times Initial relationship \times Post	-0.491	-2.517**	-6.442**	-2.697**	
	(0.717)	(1.211)	(2.564)	(1.163)	
Initial relationship \times Post	-30.030***	-25.608***	-17.387***	-25.116***	
	(1.596)	(2.752)	(5.881)	(2.699)	
Treatment \times Initial relationship \times Avg. cites \times Post	-0.752***				
	(0.285)				
Initial relationship \times Avg. cites \times Post	1.639***				
	(0.619)				
Treatment \times Initial relationship \times Patents \times Post	0.004***				
	(0.001)				
Initial relationship \times Patents \times Post	-0.010***				
•	(0.004)				
Treatment \times Initial relationship \times IDD \times Post	,	4.152**	8.401*	2.873*	
•		(2.079)	(4.720)	(1.761)	
Initial relationship \times IDD \times Post		-8.526*	-17.343	-6.075	
•		(4.573)	(10.476)	(3.945)	
Bank-firm FE	Y	Y	Y	Y	
Bank-year FE	Y	Y	Y	Y	
Firm-year FE	Y	Y	Y	Y	
No. of bank-firm pairs	6,973	4,161	1,664	4,161	

Notes: All regressions are run at the bank-firm-period level (two observations per bank-firm pair). The sample is limited to bank-firm (ij) pairs with at least one loan within the previous five years leading up to AIPA (pre-period from 1996 to 2000) or within the first five years after AIPA (postperiod from 2001 to 2005). The sample in the third column is subject to the availability of data on the distribution of employees across firms' locations. Furthermore, the sample in the second and fourth columns is limited to firms that did not change their headquarter. The dependent variable is the log of the total volume of all loan transactions between firm i and bank j, separately for the pre- and post-period. $Treatment_i$ is defined at the industry level (based on two-digit SIC codes), and measures the mean difference in years between the filing date and the grant date, across all patents granted to publicly listed firms in the respective industry between 1996 and 2000. Initial $relationship_{ij}$ is an indicator variable for whether firm i received a loan from bank j anytime in the pre-period. $Post_t$ is a dummy variable for the post-period from 2001 to 2005. $Avg.\ cites_i$ is the average number of forward citations per patent across all patents issued by firm i in the pre-period. $Patents_i$ is the total number of patents issued by firm i in the pre-period. IDD_i reflects whether firm i was exposed to the adoption of the Inevitable Disclosure Doctrine (IDD), and is defined differently across the second to fourth columns. In the second column, it is an indicator variable for whether firm i operated out of a state that had adopted IDD by 1996, and did not reverse it thereafter, whereas in the fourth column, we also include states the courts of which eventually rejected IDD after its adoption (namely, Florida in 2001, Michigan in 2002, and Texas in 2003). In the third column, IDD_i is equal to the mean of the average IDD-indicator values weighted by the proportion of firm i's employees across states until 1996. Bank fixed effects are defined for all commercial and universal banks. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the bank level) are in parentheses.

Table 7: Impact of AIPA on Extensive Margin of Lending Relationships – Quality of Pre-AIPA Patents and Inevitable Disclosure Doctrine (IDD)

	Loan from bank $\in \{0, 1\}$					
Sample	Loan(s) in pre- or post-period					
IDD definition		$_{ m HQ}$	Employees	Reversals		
Treatment \times Initial relationship \times Post	-0.025	-0.115**	-0.172*	-0.128**		
	(0.034)	(0.052)	(0.090)	(0.062)		
Initial relationship \times Post	-1.579***	-1.361***		-1.323***		
•	(0.078)	(0.122)	(0.203)	(0.146)		
Treatment \times Initial relationship \times Avg. cites \times Post	-0.044***	(- /	()	()		
Trouville / Invited Total College / Trope / Trope	(0.012)					
Initial relationship \times Avg. cites \times Post	0.097***					
initial relationship × 11vg. cites × 1 ost	(0.026)					
Treatment \times Initial relationship \times Patents \times Post	0.020					
Treatment × Initial relationship × 1 atents × 1 ost	(0.000)					
Initial malationalism of Datasets of Dark	,					
Initial relationship \times Patents \times Post	-0.000					
	(0.000)	0.00044	0.000	0 4 404		
Treatment \times Initial relationship \times IDD \times Post		0.203**	0.080	0.149*		
		(0.086)	(0.197)	(0.085)		
Initial relationship \times IDD \times Post		-0.429**	-0.118	-0.330*		
		(0.191)	(0.427)	(0.188)		
Bank-firm FE	Y	Y	Y	Y		
Bank-year FE	Y	Y	Y	Y		
Firm-year FE	Y	Y	Y	Y		
No. of bank-firm pairs	7,511	4,468	1,843	4,468		

Notes: All regressions are run at the bank-firm-period level (two observations per bank-firm pair). The sample is limited to bank-firm (ij) pairs with at least one loan within the previous five years leading up to AIPA (pre-period from 1996 to 2000) or within the first five years after AIPA (postperiod from 2001 to 2005). The sample in the third column is subject to the availability of data on the distribution of employees across firms' locations. Furthermore, the sample in the second and fourth columns is limited to firms that did not change their headquarter. The dependent variable is an indicator for the occurrence of any loan transaction between firm i and bank j. Treatment_i is defined at the industry level (based on two-digit SIC codes), and measures the mean difference in years between the filing date and the grant date, across all patents granted to publicly listed firms in the respective industry between 1996 and 2000. Initial relationship_{ij} is an indicator variable for whether firm i received a loan from bank j anytime in the pre-period. $Post_t$ is a dummy variable for the post-period from 2001 to 2005. Avg. cites, is the average number of forward citations per patent across all patents issued by firm i in the pre-period. $Patents_i$ is the total number of patents issued by firm i in the pre-period. IDD_i reflects whether firm i was exposed to the adoption of the Inevitable Disclosure Doctrine (IDD), and is defined differently across the second to fourth columns. In the second column, it is an indicator variable for whether firm i operated out of a state that had adopted IDD by 1996, and did not reverse it thereafter, whereas in the fourth column, we also include states the courts of which eventually rejected IDD after its adoption (namely, Florida in 2001, Michigan in 2002, and Texas in 2003). In the third column, IDD_i is equal to the mean of the average IDD-indicator values weighted by the proportion of firm i's employees across states until 1996. Bank fixed effects are defined for all commercial and universal banks. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the bank level) are in parentheses.

Table 8: Impact of AIPA on Firms' Cost of Debt

		ln(Interest	;)
Treatment × Post	-0.129**	-0.057	-0.566***
	(0.053)	(0.064)	(0.179)
Treatment \times Patenting \times Post		-0.303**	
		(0.122)	
Patenting \times Post		0.673**	
		(0.282)	
Treatment \times Initial relationship \times Post			0.452**
			(0.200)
Initial relationship \times Post			-0.668
			(0.448)
Log of deal size/assets	-0.012	-0.014	-0.011
	(0.009)	(0.010)	(0.009)
Refinancing $\in \{0, 1\}$	-0.023**	-0.023**	-0.024**
	(0.011)	(0.011)	(0.011)
Controls	Y	Y	Y
Firm FE	Y	Y	Y
Bank FE	Y	Y	Y
Industry-year (SIC1) FE	Y	Y	Y
N	16,858	14,958	16,858

Notes: The sample consists of all completed syndicated loans (package level) of publicly listed firms i at date t granted by lead arranger(s) j. The dependent variable is the log of the all-in-drawn spread (in bps), which is the sum of the spread over LIBOR and any annual fees paid to the lender syndicate. $Treatment_i$ is defined at the industry level (based on two-digit SIC codes), and measures the mean difference in years between the filing date and the grant date, across all patents granted to publicly listed firms in the respective industry between 1996 and 2000. $Post_t$ is a dummy variable for the post-AIPA period from 2001 onwards. $Patenting_i$ is an indicator variable for whether firm i issued any patents during the pre-AIPA period from 1996 to 2000. $Initial\ relationship_{ij}$ is a dummy variable for whether firm i already received at least one loan from lead arranger j anytime during the pre-AIPA period from 1996 to 2000; the variable is non-zero only for the post-AIPA period $(Post_t = 1)$. Control variables are measured in year t, and include the log of firm i's sales and the log of its number of employees. Bank fixed effects are included for all lead arrangers. Industry-year fixed effects are based on one-digit SIC codes. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the bank level) are in parentheses.

Table 9: Impact of Bank Information Acquisition on Firm-level Patenting

	ln(1+Patents)	ln(1+Cites)	Patenting $\in \{0, 1\}$	ln(Patents)
Sample	All	All	All	Patents $\neq 0$
Loan from CB, underwriting from IB,	-0.236***	-0.613***	-0.014	-0.108**
both merged	(0.031)	(0.051)	(0.012)	(0.043)
Loan from CB that merged	-0.035*	-0.168***	-0.016	-0.008
\times Underwriting from IB that merged	(0.020)	(0.037)	(0.010)	(0.031)
Loan from CB that merged	0.036***	0.005	0.015*	0.097***
	(0.013)	(0.025)	(0.008)	(0.025)
Underwriting from IB that merged	0.079***	0.075***	0.019***	0.064***
	(0.015)	(0.027)	(0.008)	(0.023)
Any loan \times Any underwriting	0.002	-0.043	-0.006	0.001
	(0.014)	(0.028)	(0.009)	(0.026)
Any loan	-0.024*	0.031	-0.010	-0.061**
	(0.014)	(0.029)	(0.009)	(0.030)
Any underwriting	0.002	0.042**	0.000	-0.002
	(0.009)	(0.017)	(0.005)	(0.016)
Controls	Y	Y	Y	Y
Firm FE	Y	Y	Y	Y
Industry-year FE	Y	Y	Y	Y
N	61,242	61,242	61,242	22,593

Notes: The sample consists of all available observations from Compustat, the unit of observation is the firm-year level it. The dependent variable in the first and the fourth column is the logged number of firm i's number of patents in year t, in the second column the log of the total number of forward citations across all patents issued by firm i in year t,, and in the third column an indicator variable for whether firm i issued any patents in year t. Loan from CB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received a loan from a commercial or universal bank that merged with an investment bank thereafter. Underwriting from IB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received an underwriting product from an investment bank that merged with a commercial or universal bank thereafter. The interaction of the latter two indicator variables is to be distinguished from the explanatory variable of interest in the first row, which indicates whether anytime from t-10to t-1, firm i received a loan from a commercial or universal bank, an underwriting product from an investment bank, and both banks merged with each other until year t. Any loan_{it} and Any underwriting are indicator variables for whether firm i received any loan or any underwriting product, respectively, from any commercial, universal, or investment bank anytime from t-10 to t-1. Unless mentioned otherwise, control variables are measured in year t, and include the log of firm i's sales, the log of its number of employees, the log of the average ratio of deal size across all loans over firm i's assets from t-10 to t-1, and the proportion of refinancing loans from t-10to t-1. Industry-year fixed effects are based on two-digit SIC codes. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the firm-year level) are in parentheses.

Table 10: Impact of Bank Information Acquisition on Firm-level Innovation

	ln(R&D)	$\ln(R\&D+SG\&A)$	ln(1+Products)	$\ln(1+\text{Prod.*})$
Loan from CB, underwriting from IB,	0.021	0.007	0.027***	0.004
both merged	(0.013)	(0.008)	(0.010)	(0.007)
Loan from CB that merged	-0.053***	-0.025***	0.017**	0.012**
\times Underwriting from IB that merged	(0.013)	(0.008)	(0.007)	(0.006)
Loan from CB that merged	0.060***	0.049***	0.013***	0.007**
	(0.009)	(0.006)	(0.004)	(0.003)
Underwriting from IB that merged	0.103***	0.059***	0.024***	0.013***
	(0.010)	(0.007)	(0.005)	(0.004)
Any loan \times Any underwriting	0.035***	-0.008	-0.003	-0.003
	(0.009)	(0.007)	(0.004)	(0.004)
Any loan	-0.061***	-0.027***	-0.015***	-0.009***
	(0.010)	(0.007)	(0.004)	(0.003)
Any underwriting	0.025***	0.066***	0.004	0.005**
	(0.006)	(0.005)	(0.003)	(0.002)
Controls	Y	Y	Y	Y
Firm FE	Y	Y	Y	Y
Industry-year FE	Y	Y	Y	Y
N	76,819	69,814	111,673	111,673

Notes: The sample consists of all available observations from Compustat, the unit of observation is the firm-year level it. The dependent variable in the first column is the log of firm i's research and development (R&D) expenditures in year t, in the second column the logged sum of firm i's R&D and selling, general, and administrative (SG&A) expenditures in year t, and in the third column the logged number of firm i's new-product announcements in year t, for which we use event-study methodology by fitting a market model over the (-246,-30) period to yield the expected returns on the firm's stock, estimating cumulative abnormal returns (CARs) over the (-1,1) period around the announcement, and finally counting all announcements associated with positive CARs over the year. In the last column, we use as dependent variable an alternative definition for the logged number of firm i's new-product announcements in year t, counting all announcements associated with CARs above the 75th percentile in the sample over the year. Loan from CB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received a loan from a commercial or universal bank that merged with an investment bank thereafter. Underwriting from IB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received an underwriting product from an investment bank that merged with a commercial or universal bank thereafter. The interaction of the latter two indicator variables is to be distinguished from the explanatory variable of interest in the first row, which indicates whether anytime from t-10to t-1, firm i received a loan from a commercial or universal bank, an underwriting product from an investment bank, and both banks merged with each other until year t. Any loan_{it} and Any underwriting_{it} are indicator variables for whether firm i received any loan or any underwriting product, respectively, from any commercial, universal, or investment bank anytime from t-10 to t-1. Unless mentioned otherwise, control variables are measured in year t, and include the log of firm i's sales, the log of its number of employees, the log of the average ratio of deal size across all loans over firm i's assets from t-10 to t-1, and the proportion of refinancing loans from t-10to t-1. Industry-year fixed effects are based on two-digit SIC codes. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the firm-year level) are in parentheses.

Table 11: Impact of Bank Information Acquisition on Firm-level Capital Expenditure and Assets

	ln(CapEx)	ln(Assets)	ln(Gross PP&E)	ln(Net PP&E)
Loan from CB, underwriting from IB,	0.032**	0.040***	0.000	0.052***
both merged	(0.013)	(0.007)	(0.008)	(0.009)
Loan from CB that merged	-0.023	0.002	-0.030***	-0.038***
\times Underwriting from IB that merged	(0.016)	(0.008)	(0.009)	(0.010)
Loan from CB that merged	0.073***	0.061***	0.025***	0.071***
	(0.013)	(0.006)	(0.007)	(0.008)
Underwriting from IB that merged	0.024*	0.058***	0.062***	0.053***
	(0.013)	(0.007)	(0.007)	(0.009)
Any loan \times Any underwriting	0.032**	0.047***	-0.035***	-0.029***
	(0.015)	(0.007)	(0.008)	(0.010)
Any loan	-0.086***	-0.060***	0.062***	0.014
	(0.015)	(0.007)	(0.009)	(0.010)
Any underwriting	0.009	0.025***	0.117***	0.089***
	(0.009)	(0.005)	(0.005)	(0.006)
Controls	Y	Y	Y	Y
Firm FE	Y	Y	Y	Y
Industry-year FE	Y	Y	Y	Y
N	109,604	111,669	110,996	111,296

Notes: The sample consists of all available observations from Compustat, the unit of observation is the firm-year level it. The dependent variable in the first column is the log of firm i's capital expenditure in year t, in the second column the logged book value of firm i's assets in year t, in the third column the log of firm i's gross property, plant, and equipment (PP&E) in year t, and in the last column the log of firm i's net property, plant, and equipment (PP&E) in year t. Loan from CB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received a loan from a commercial or universal bank that merged with an investment bank thereafter. Underwriting from IB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received an underwriting product from an investment bank that merged with a commercial or universal bank thereafter. The interaction of the latter two indicator variables is to be distinguished from the explanatory variable of interest in the first row, which indicates whether anytime from t-10 to t-1, firm i received a loan from a commercial or universal bank, an underwriting product from an investment bank, and both banks merged with each other until year t. Any loan_{it} and Any underwriting_{it} are indicator variables for whether firm i received any loan or any underwriting product, respectively, from any commercial, universal, or investment bank anytime from t-10 to t-1. Unless mentioned otherwise, control variables are measured in year t, and include the log of firm i's sales, the log of its number of employees, the log of the average ratio of deal size across all loans over firm i's assets from t-10 to t-1, and the proportion of refinancing loans from t-10 to t-1. Industry-year fixed effects are based on two-digit SIC codes. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the firm-year level) are in parentheses.

Table 12: Impact of Bank Information Acquisition on Loan Conditions

	1 (7	1 (3.5	G (0.1)	0 1 [0.4]
	ln(Interest)	ln(Maturity)	Covenant $\in \{0, 1\}$	Secured $\in [0,1]$
Loan from CB, underwriting from IB,	0.018	-0.083***	-0.043***	0.004
both merged	(0.035)	(0.023)	(0.013)	(0.022)
Loan from CB that merged	-0.008	-0.004	-0.003	-0.026
\times Underwriting from IB that merged	(0.038)	(0.027)	(0.017)	(0.020)
Loan from CB that merged	-0.036*	-0.046**	-0.018*	-0.005
	(0.021)	(0.018)	(0.010)	(0.010)
Underwriting from IB that merged	-0.002	0.001	-0.011	$0.003^{'}$
	(0.027)	(0.021)	(0.016)	(0.012)
Any loan \times Any underwriting	0.021	-0.035	-0.029*	$0.015^{'}$
· · ·	(0.034)	(0.030)	(0.018)	(0.014)
Any loan	-0.001	0.053**	0.015	-0.024
	(0.022)	(0.025)	(0.011)	(0.018)
Any underwriting	-0.032	0.024	0.021*	-0.008
· ·	(0.020)	(0.019)	(0.012)	(0.010)
Controls	Y	Y	Y	Y
Bank FE	Y	Y	Y	Y
Industry-year FE	Y	Y	Y	Y
N	16,858	17,566	18,922	12,373

Notes: The sample consists of all completed syndicated loans (package level) of publicly listed firms i at date t granted by lead arranger(s) j. The dependent variable in the first column is the log of the all-in-drawn spread (in bps), which is the sum of the spread over LIBOR and any annual fees paid to the lender syndicate, in the second column the logged maturity, in the third column an indicator for whether the loan has at least one financial covenant, and in the last column the proportion of facilities within the package that are secured. Loan from CB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received a loan from a commercial or universal bank that merged with an investment bank thereafter. Underwriting from IB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received an underwriting product from an investment bank that merged with a commercial or universal bank thereafter. The interaction of the latter two indicator variables is to be distinguished from the explanatory variable of interest in the first row, which indicates whether anytime from t-10 to t-1, firm i received a loan from a commercial or universal bank, an underwriting product from an investment bank, and both banks merged with each other until year t. Any $loan_{it}$ and Any $underwriting_{it}$ are indicator variables for whether firm i received any loan or any underwriting product, respectively, from any commercial, universal, or investment bank anytime from t-10 to t-1. Unless mentioned otherwise, control variables are measured in year t, and include the log of firm i's sales, the log of its number of employees, the log of the average ratio of deal size across all loans over firm i's assets from t-10 to t-1, and the proportion of refinancing loans from t-10 to t-1. Bank fixed effects are included for all lead arrangers. Industry-year fixed effects are based on two-digit SIC codes. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the bank level) are in parentheses.

Supplementary Appendix (Not for Publication)

A Supplementary Tables

Table A.1: Impact of AIPA on Intensive Margin of Lending Relationships – Robustness

	ln(1+Loan volume)					
Sample	At least one loan in pre- or post-period					
Robustness	Median delay 4y window 3y window No defa					
$\overline{\text{Treatment} \times \text{Initial relationship} \times \text{Post}}$	-1.936***	-2.258***	-1.681*	-1.694*		
	(0.574)	(0.623)	(0.866)	(1.021)		
Initial relationship \times Post	-27.294***	-26.933***	-28.801***	-26.374***		
	(1.236)	(1.436)	(1.862)	(2.340)		
Bank-firm FE	Y	Y	Y	\mathbf{Y}		
Bank-year FE	Y	Y	Y	Y		
Firm-year FE	Y	Y	Y	Y		
No. of bank-firm pairs	7,558	6,247	4,434	3,574		

Notes: All regressions are run at the bank-firm-period level (two observations per bank-firm pair). In the first and fourth columns, the sample is limited to bank-firm (ij) pairs with at least one loan within the previous five years leading up to AIPA (pre-period from 1996 to 2000) or within the first five years after AIPA (post-period from 2001 to 2005). In the second and third columns, we vary the time window around AIPA to four years (pre-period from 1997 to 2000, post-period from 2001 to 2004) and three years (pre-period from 1998 to 2000, post-period from 2001 to 2003), respectively. In the fourth column, firms that were delisted for bankruptcy-related reasons anytime until (and including) 2005 were also dropped from the sample. Bankruptcy is identified using the following CRSP delisting codes: any type of liquidation (400-490); price fell below acceptable level; insufficient capital, surplus, and/or equity; insufficient (or non-compliance with rules of) float or assets; company request, liquidation; bankruptcy, declared insolvent; delinquent in filing; nonpayment of fees; does not meet exchange's financial guidelines for continued listing; protection of investors and the public interest; corporate governance violation; and delist required by Securities Exchange Commission (SEC). The dependent variable is the log of the total volume of all loan transactions between firm i and bank j, separately for the pre- and post-period. Treatment_i is defined at the industry level (based on two-digit SIC codes), and measures the median difference in the first column, and the mean difference in all remaining columns, in years between the filing date and the grant date, across all patents granted to publicly listed firms in the respective industry between 1996 and 2000. Initial relationship_{ij} is an indicator variable for whether firm i received a loan from bank j anytime in the pre-period. $Post_t$ is a dummy variable for the post-period from 2001 to 2005 in the first and fourth columns, from 2001 to 2004 in the second column, and from 2001 to 2003 in the third column. Bank fixed effects are defined for all commercial and universal banks. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the bank level) are in parentheses.

Table A.2: Impact of AIPA on Extensive Margin of Lending Relationships – Robustness

	Loan from bank $\in \{0, 1\}$				
Sample	At least one loan in pre- or post-period				
Robustness	Median delay 4y window 3y window No d				
$\overline{\text{Treatment} \times \text{Initial relationship} \times \text{Post}}$	-0.093***	-0.118***	-0.067**	-0.086*	
	(0.030)	(0.029)	(0.029)	(0.044)	
Initial relationship \times Post	-1.444***	-1.397***	-1.534***	-1.370***	
	(0.070)	(0.074)	(0.063)	(0.111)	
Bank-firm FE	Y	Y	Y	Y	
Bank-year FE	Y	Y	Y	Y	
Firm-year FE	Y	Y	${ m Y}$	Y	
No. of bank-firm pairs	8,110	6,710	4,784	3,964	

Notes: All regressions are run at the bank-firm-period level (two observations per bank-firm pair). In the first and fourth columns, the sample is limited to bank-firm (ij) pairs with at least one loan within the previous five years leading up to AIPA (pre-period from 1996 to 2000) or within the first five years after AIPA (post-period from 2001 to 2005). In the second and third columns, we vary the time window around AIPA to four years (pre-period from 1997 to 2000, post-period from 2001 to 2004) and three years (pre-period from 1998 to 2000, post-period from 2001 to 2003), respectively. In the fourth column, firms that were delisted for bankruptcy-related reasons anytime until (and including) 2005 were also dropped from the sample. Bankruptcy is identified using the following CRSP delisting codes: any type of liquidation (400-490); price fell below acceptable level; insufficient capital, surplus, and/or equity; insufficient (or non-compliance with rules of) float or assets; company request, liquidation; bankruptcy, declared insolvent; delinquent in filing; nonpayment of fees; does not meet exchange's financial guidelines for continued listing; protection of investors and the public interest; corporate governance violation; and delist required by Securities Exchange Commission (SEC). The dependent variable is an indicator for the occurrence of any loan transaction between firm i and bank j. $Treatment_i$ is defined at the industry level (based on two-digit SIC codes), and measures the median difference in the first column, and the mean difference in all remaining columns, in years between the filing date and the grant date, across all patents granted to publicly listed firms in the respective industry between 1996 and 2000. Initial $relationship_{ij}$ is an indicator variable for whether firm i received a loan from bank j anytime in the pre-period. $Post_t$ is a dummy variable for the post-period from 2001 to 2005 in the first and fourth columns, from 2001 to 2004 in the second column, and from 2001 to 2003 in the third column. Bank fixed effects are defined for all commercial and universal banks. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the bank level) are in parentheses.

Table A.3: Impact of AIPA on Firms' Ability to Raise Capital in Public Markets

	Public issues Public issues + Loans	Debt issues Public issues + Loans	Equity issues Public issues + Loans
$Treatment \times Post$	0.114**	0.086*	0.027
	(0.049)	(0.045)	(0.040)
Controls	Y	Y	Y
Firm FE	Y	Y	Y
Industry-year (SIC1) FE	Y	Y	Y
Mean of dep. variable	0.747	0.222	0.525
Std. dev. of dep. variable	0.434	0.401	0.487
N	23,219	23,219	23,219

Notes: The sample consists of all available observations from Compustat, conditional on the respective firm i raising any capital in public markets as recorded in SDC; the unit of observation is the firm-year level it. For the dependent variables, $Public\ issues_{it}$ denotes the sum of total debt and equity financing of firm i through public capital markets (as recorded in SDC) in year t, $Loans_{it}$ is the total debt financing of firm i through syndicated loans (as recorded in DealScan) in year t, and $Debt\ issues_{it}$ and $Equity\ issues_{it}$ are equal to, respectively, total debt and total equity financing of firm i through public capital markets (as recorded in SDC) in year t. $Treatment_i$ is defined at the industry level (based on two-digit SIC codes), and measures the mean difference in years between the filing date and the grant date, across all patents granted to publicly listed firms in the respective industry between 1996 and 2000. $Post_t$ is a dummy variable for the post-AIPA period from 2001 onwards. Control variables are measured in year t, and include the log of firm i's sales and the log of its number of employees. Industry-year fixed effects are based on one-digit SIC codes. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the firm-year level) are in parentheses.

Table A.4: Impact of Bank Information Acquisition on Firm-level Patenting – Robustness to State-year Fixed Effects

	ln(1+Patents)	ln(1+Cites)	Patenting $\in \{0, 1\}$	ln(Patents)
Sample	All	All	All	Patents $\neq 0$
Loan from CB, underwriting from IB,	-0.279***	-0.686***	-0.021*	-0.128***
both merged	(0.032)	(0.052)	(0.012)	(0.044)
	, ,	, ,	, ,	,
Loan from CB that merged	-0.028	-0.154***	-0.005	0.016
\times Underwriting from IB that merged	(0.022)	(0.040)	(0.011)	(0.032)
Loan from CB that merged	0.035***	-0.020	0.010	0.084***
	(0.013)	(0.026)	(0.008)	(0.025)
Underwriting from IB that merged	0.097***	0.110***	0.020**	0.065***
	(0.017)	(0.031)	(0.009)	(0.024)
Any loan \times Any underwriting	-0.000	-0.033	-0.006	0.031
	(0.015)	(0.030)	(0.009)	(0.028)
Any loan	-0.026*	0.028	-0.012	-0.063**
	(0.015)	(0.031)	(0.010)	(0.031)
Any underwriting	-0.012	0.030	-0.002	-0.031*
	(0.010)	(0.020)	(0.006)	(0.018)
Controls	Y	Y	Y	Y
Firm FE	Y	Y	Y	Y
State-year FE	Y	Y	Y	Y
Industry-year FE	Y	Y	Y	Y
N	52,015	52,015	52,015	19,914

Notes: The sample consists of all available observations from Compustat, the unit of observation is the firm-year level it. The dependent variable in the first and the fourth column is the logged number of firm i's number of patents in year t, in the second column the log of the total number of forward citations across all patents issued by firm i in year t,, and in the third column an indicator variable for whether firm i issued any patents in year t. Loan from CB that $merged_{it}$ is an indicator variable for whether any time from t-10 to t-1, firm i received a loan from a commercial or universal bank that merged with an investment bank thereafter. Underwriting from IB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received an underwriting product from an investment bank that merged with a commercial or universal bank thereafter. The interaction of the latter two indicator variables is to be distinguished from the explanatory variable of interest in the first row, which indicates whether anytime from t-10to t-1, firm i received a loan from a commercial or universal bank, an underwriting product from an investment bank, and both banks merged with each other until year t. Any loanit and Any underwriting_{it} are indicator variables for whether firm i received any loan or any underwriting product, respectively, from any commercial, universal, or investment bank anytime from t-10 to t-1. Unless mentioned otherwise, control variables are measured in year t, and include the log of firm i's sales, the log of its number of employees, the log of the average ratio of deal size across all loans over firm i's assets from t-10 to t-1, and the proportion of refinancing loans from t-10 to t-1. State-year fixed effects are based on firm i's headquarter in year t. Industry-year fixed effects are based on two-digit SIC codes. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the firm-year level) are in parentheses.

Table A.5: Impact of Bank Information Acquisition on Firm-level Innovation – Robustness to State-year Fixed Effects

	ln(R&D)	ln(R&D+SG&A)	ln(1+Products)	$\ln(1+\text{Prod.*})$
Loan from CB, underwriting from IB,	0.024*	0.009	0.017*	-0.005
both merged	(0.013)	(0.008)	(0.010)	(0.007)
Loan from CB that merged	-0.052***	-0.017**	0.016**	0.012*
\times Underwriting from IB that merged	(0.013)	(0.009)	(0.008)	(0.006)
	0 0 0 8 14 14 14	بالبالبالية		0.000
Loan from CB that merged	0.065***	0.049***	0.016***	0.009**
	(0.009)	(0.006)	(0.004)	(0.003)
Underwriting from IB that merged	0.090***	0.046***	0.024***	0.012**
	(0.010)	(0.007)	(0.006)	(0.005)
Any loan \times Any underwriting	0.026***	-0.004	-0.005	-0.004
	(0.010)	(0.008)	(0.005)	(0.004)
Any loan	-0.053***	-0.029***	-0.012**	-0.007*
	(0.010)	(0.008)	(0.005)	(0.004)
Any underwriting	0.015**	0.060***	0.006*	0.007**
	(0.007)	(0.005)	(0.004)	(0.003)
Controls	Y	Y	Y	Y
Firm FE	Y	Y	Y	Y
State-year FE	Y	Y	Y	Y
Industry-year FE	Y	Y	Y	Y
N	63,921	58,554	93,181	93,181

Notes: The sample consists of all available observations from Compustat, the unit of observation is the firm-year level it. The dependent variable in the first column is the log of firm i's research and development (R&D) expenditures in year t, in the second column the logged sum of firm i's R&D and selling, general, and administrative (SG&A) expenditures in year t, and in the third column the logged number of firm i's new-product announcements in year t, for which we use event-study methodology by fitting a market model over the (-246,-30) period to yield the expected returns on the firm's stock, estimating cumulative abnormal returns (CARs) over the (-1,1) period around the announcement, and finally counting all announcements associated with positive CARs over the year. In the last column, we use as dependent variable an alternative definition for the logged number of firm i's new-product announcements in year t, counting all announcements associated with CARs above the 75th percentile in the sample over the year. Loan from CB that merged_{it} is an indicator variable for whether anytime from t-10 to t-1, firm i received a loan from a commercial or universal bank that merged with an investment bank thereafter. Underwriting from IB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received an underwriting product from an investment bank that merged with a commercial or universal bank thereafter. The interaction of the latter two indicator variables is to be distinguished from the explanatory variable of interest in the first row, which indicates whether anytime from t-10to t-1, firm i received a loan from a commercial or universal bank, an underwriting product from an investment bank, and both banks merged with each other until year t. Any loan_{it} and Any underwriting_{it} are indicator variables for whether firm i received any loan or any underwriting product, respectively, from any commercial, universal, or investment bank anytime from t-10 to t-1. Unless mentioned otherwise, control variables are measured in year t, and include the log of firm i's sales, the log of its number of employees, the log of the average ratio of deal size across all loans over firm i's assets from t-10 to t-1, and the proportion of refinancing loans from t-10 to t-1. State-year fixed effects are based on firm i's headquarter in year t. Industry-year fixed effects are based on two-digit SIC codes. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the firm-year level) are in parentheses.

Table A.6: Impact of Bank Information Acquisition on Firm-level Capital Expenditure and Assets – Robustness to State-year Fixed Effects

	ln(CapEx)	ln(Assets)	ln(Gross PP&E)	ln(Net PP&E)
Loan from CB, underwriting from IB,	0.020	0.035***	-0.001	0.038***
both merged	(0.014)	(0.007)	(0.008)	(0.009)
Loan from CB that merged	-0.038**	0.004	-0.040***	-0.045***
\times Underwriting from IB that merged	(0.017)	(0.009)	(0.009)	(0.011)
Loan from CB that merged	0.053***	0.052***	0.028***	0.063***
	(0.013)	(0.006)	(0.007)	(0.008)
Underwriting from IB that merged	0.032**	0.048***	0.072***	0.057***
	(0.015)	(0.008)	(0.008)	(0.010)
Any loan \times Any underwriting	0.025	0.037***	-0.033***	-0.029***
	(0.016)	(0.007)	(0.008)	(0.010)
Any loan	-0.091***	-0.067***	0.050***	0.001
	(0.016)	(0.008)	(0.010)	(0.012)
Any underwriting	0.008	0.028***	0.109***	0.082***
	(0.011)	(0.006)	(0.006)	(0.007)
Controls	Y	Y	Y	Y
Firm FE	Y	Y	Y	Y
State-year FE	Y	Y	Y	Y
Industry-year FE	Y	Y	Y	Y
N	91,686	93,180	92,672	92,895

Notes: The sample consists of all available observations from Compustat, the unit of observation is the firm-year level it. The dependent variable in the first column is the log of firm i's capital expenditure in year t, in the second column the logged book value of firm i's assets in year t, in the third column the log of firm i's gross property, plant, and equipment (PP&E) in year t, and in the last column the log of firm i's net property, plant, and equipment (PP&E) in year t. Loan from CB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received a loan from a commercial or universal bank that merged with an investment bank thereafter. Underwriting from IB that $merged_{it}$ is an indicator variable for whether anytime from t-10 to t-1, firm i received an underwriting product from an investment bank that merged with a commercial or universal bank thereafter. The interaction of the latter two indicator variables is to be distinguished from the explanatory variable of interest in the first row, which indicates whether anytime from t-10 to t-1, firm i received a loan from a commercial or universal bank, an underwriting product from an investment bank, and both banks merged with each other until year t. Any $loan_{it}$ and Any $underwriting_{it}$ are indicator variables for whether firm i received any loan or any underwriting product, respectively, from any commercial, universal, or investment bank anytime from t-10 to t-1. Unless mentioned otherwise, control variables are measured in year t, and include the log of firm i's sales, the log of its number of employees, the log of the average ratio of deal size across all loans over firm i's assets from t-10 to t-1, and the proportion of refinancing loans from t-10 to t-1. State-year fixed effects are based on firm i's headquarter in year t. Industry-year fixed effects are based on two-digit SIC codes. Public-service, energy, and financial-services firms are dropped. Robust standard errors (clustered at the firm-year level) are in parentheses.