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Abstract 

Research tools are essential inputs to technological progress.  Yet many new tools require 
specialized complementary know-how to be applied effectively.  Teams in any research domain 
face the tradeoff of either acquiring this know-how themselves or working with external tool 
specialists, individuals with tool know-how independent of a domain.  These specialists are 
scarce early on and can choose domain teams to create many applications for the tool or to 
focus on complicated problems.  Ex ante it is unclear where the match between domain teams 
and external tool specialists dominates.  The introduction of the DNA-editing tool CRISPR 
enables identification of external tool specialists on research teams by exploiting natural 
difficulties of applying CRISPR across disease domains.  Teams have a higher share of external 
tool specialists in difficult diseases, especially for subsequent innovations.  This suggests that 
external tool specialists and domain teams match more often to solve complex but influential 
problems.  As more tools like Artificial Intelligence emerge, research teams will have to also 
weigh the importance of their possible solutions when considering how best to attract and 
collaborate with external tool specialists. 
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1 Introduction 

Some of history’s greatest technological advances can be attributed to research tools.  Research 
tools include physical inputs into the process of discovery and can be inventions of a method of 
invention with large economic impacts across a range of domains (e.g., Griliches 1957; Walsh, Arora, 
and Cohen 2003; Cockburn, Henderson, and Stern 2017). For example magnification provided by 
microscopes allowed Antony Van Leeuwenhoek to first observe bacteria, critical to today’s 
understanding of biology and medicine (Wills 2018).  The introduction of Polymerase Chain 
Reaction (PCR) by Kary Mullis allowed scientists to make copies of DNA which improved the speed 
of diagnostic tests and revolutionized the way scientists manipulated genetic material (Rabinow 
2011).  The statistical software package STATA improved researcher productivity in many domains, 
including economics, finance, epidemiology, political science, and sociology (Pinzon 2015). 

Technological progress requires domain knowledge as well as tools (e.g., Rosenberg 1982, 1994, 
2009; Nelson 1981, 2003; David 1990; Bresnahan and Trajtenberg 1995; Rosenberg and Trajtenberg 
2004).  For example, advances in microscopes and molecular pathway knowledge lead to medical 
breakthroughs.  Over time, the combination of new tool and domain knowledge leads to an ever-
larger knowledge base from which innovation emerges (Cohen and Levinthal 1989; Weitzman 1998; 
Fleming 2001; Mokyr 2002; Wuchty et al. 2007; Schilling and Green 2011). 

Research tools require adopters to both have access and the ability to apply the tool in a 
domain (Teece 1986; Scotchmer 1991; Weitzman 1996; Fleming 2001).  Tools often embed sufficient 
know-how so that primarily access to the tool lowers research costs to innovators in the domain and 
lowers entry barriers to external innovators (e.g., Furman and Stern 2011; Williams 2013; Murray et 
al. 2016). But not all new tools embed their necessary know-how.  In order to effectively apply such 
tools, early adopters must acquire complementary tool-specific know-how.  This additional input to 
knowledge production is distinct from human capital in the domain and physical capital in the tool.  
Since the complementary know-how is crucial for the adoption of a new tool that can advance 
technological progress this paper explores the question: How do early teams acquire the tool-specific 
know-how necessary to innovate with a new research tool? 
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The amount of complementary specialized tool know-how is not binary, but rather varies along 
a continuum.  Ex ante, newly introduced tools can require more complementary know-how in some 
domains than others.  Over a set of these domains on the continuum, the complementary know-how 
can come from teams internal to a domain or external specialists in the tool not associated with the 
domain.  Over the range of domains where there is a choice of where to acquire complementary 
know-how, internal domain teams face a form of the “make or buy” problem over whether to learn 
the complementary know-how or collaborate with external specialists (e.g., Coase 1937; Williamson 
1975, 1985).  For example, consider a research team’s decision to use advanced Artificial Intelligence 
(AI).  If the team does not have employees trained in the technology, it must either provide 
incentives for employees to learn AI themselves or it must find and pay for external specialists, 
either through training or hiring.   

When tools are new, external tool specialists are scarce, giving them a separate choice of which 
domain teams to join, introducing a two-sided market matching problem (e.g., Gale and Shapley 
1962; Roth 1984).  External tool specialists can either choose to join teams in easier domains where 
they can apply the tool quickly and broadly or they can choose to join teams in difficult domains 
where the problems are complex and solutions are potentially more influential.  The decision of 
where and how to work with scarce external tool specialists to acquire complementary tool know-
how is one firms, mangers, and individual innovators face repeatedly as they innovate. 

Given the costs and benefits of collaboration and a scarce supply of external tool specialists, it 
is not immediately clear which domains are likely to attract external tool specialists into effective 
collaborations more often.  However, it is reasonable to hypothesize that team assembly to acquire 
complementary tool know-how varies by the difficulty of using the tool in the domain and that the 
ex ante complexity of the domain determines where external tool specialists match with domain 
teams most often. 

One concern with empirically studying knowledge recombination using research tools is that 
external tool specialists can contribute to the innovation process by providing access and by sharing 
complementary information about how to use the new technology (Polanyi 1962; Zucker and Darby 
2001; Murray 2002).  However, access does not necessarily lead to the ability to use a tool (e.g., 
Cohen and Levinthal 1990; Ahuja & Katila 2001; Zahra and George 2002; Thompson and Zyontz 
2017).  External specialists’ contributions to the application of a new technology apart from access 
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are difficult to identify empirically because access is commonly conflated with the ability to use the 
tool or tool and domain knowledge develop concurrently (e.g., Furman and Stern 2011; Murray et 
al. 2016; Teodoridis 2017).   

To identify whether and where external tool specialists provide specialized complementary tool 
know-how to create early innovations, an ideal setting would separately identify external tool 
specialists.  The setting would also allow access to be tracked separately from the ability to use the 
tool.  Finally, the ex ante difficulty of applying the tool should vary across domains, and the tool 
should enter different domains randomly.  Such an environment does not occur naturally, but the 
recent introduction of the DNA-editing tool, CRISPR, provides a novel and approximate setting.   

CRISPR is a naturally occurring immune response in bacteria that proved to be a powerful 
editing tool for DNA modification in almost any organism.  The CRISPR tool was first introduced 
between June 2012 and January 2013 when researchers from Berkeley, MIT, and Harvard 
demonstrated that CRISPR could be used to edit DNA in both bacteria and mammals.  CRISPR is 
a substantial improvement over existing DNA editing tools especially for researchers working in 
mammalian cells (Zyontz 2016).  For mammalian researchers, it represented a long-term reduction 
in research costs and an unanticipated increase in new opportunities across a wide range of domains.   

CRISPR has incredible promise in human disease domains caused by genetic mutations, such as 
infections, viruses, and inherited genetic diseases.  However, not every such disease received access to 
CRISPR at the same time, as much as researchers wanted to adopt the tool.  Although CRISPR 
works similarly once delivered into a cell affected by a disease, certain cells are biologically more 
difficult to edit than others.  This imposes natural delays on when CRISPR can be applied to a 
particular disease, since researchers must first overcome this delivery problem.  The unanticipated 
timing of the CRISPR tool introduction to different human disease domains mitigates some of the 
endogeneity inherent in adoption and helps to identify the knowledge bases of the innovators 
responsible for the articles that use CRISPR in a disease.   

Specifically, the CRISPR tool was not originally developed for any specific domain application 
because it was a shock to gene editing.  It took almost another year for a human disease application 
to appear.  This established a set of separate CRISPR tool specialists not associated with a disease 
but whose know-how would be useful in any disease domain.  In the earliest years (2012 – 2016), the 
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primary adopters of CRISPR were academic scientists so it is possible to use historical publications 
from PubMed to separately identify external tool specialists from domain specialists in CRISPR.   

Because biological materials are often transferred between labs, science settings can conflate the 
different access and complementary know-how contributions of an external tool specialist.  Material 
Transfer Agreements (MTAs) can delay access or require co-authorships for the receipt of the 
materials (Walsh, Cohen, and Cho 2007; Strandberg 2010).  The CRISPR setting circumvents these 
concerns by having a biological resource center that breaks the link between contracting for access 
to the tool and acquiring complementary know-how from external specialists.  From 2012-2016, 
Addgene was the primary distributor of CRISPR to academic researchers and as a third-party, 
eliminated the need for scientists to sign MTAs directly with other academics.  Thus any external 
tool specialists observed entering a new domain in this setting primarily represent value added 
know-how rather than the price of access. 

The results show that the share of external tool specialists on new CRISPR papers in a disease 
is significantly larger in more difficult disease domains, suggesting that the match between external 
tool specialists and domain teams occurs more often in domains that focus on solving influential 
problems rather than the breadth of implementation.  The share of external tool specialists also 
increases for subsequent CRISPR papers in difficult disease domains, so the effect does not 
attenuate immediately.  The paper is the first to introduce CRISPR as a setting to empirically study 
how teams form to effectively overcome tool adoption barriers in know-how.  It also uniquely shows 
that effective team composition is driven by the specific nature of the problem and the nature of 
tools available for innovation, not just features of management, organizational structure, or industry.  
As more tools emerge that require the acquisition of complementary tool know-how, like AI, 
research teams looking to be early adopters of such tools will have to weigh the complexity and 
importance of their possible solutions in considering how best to attract and collaborate with 
external tool specialists. 

Section 2 discusses the relevant literature on knowledge inputs to innovation production and 
the choices faced by internal domain teams and external tool specialists.  Section 3 provides details 
on the CRISPR setting.  Section 4 outlines the identification and empirical specifications used for 
the analysis.  Sections 5 and 6 describes the measures constructed and results.  Section 7 provides a 
discussion of the results and concludes. 
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2 Tools as Inputs to Innovation Production 

The recent emergence of AI can be used to innovate in a range of applications including natural 
language processing, image recognition, enhanced data security, and smart products like cars (Marr 
2016).  Using AI tools as inputs to innovation in these areas requires more than just accessing an 
off-the-shelf product.  AI also requires adopters to acquire specialized knowledge and skills including 
coding, training models, building computing infrastructure, and scaling for firm-wide 
implementation.  The amount of complementary knowledge needed varies by application area.  
From a firm’s perspective, it can either have their employees learn the complementary AI know-how 
internally or can bring in external AI specialists.  External specialist know-how can be useful across 
AI applications, but when external specialists are scarce they also get to choose the application areas 
in which to collaborate.  For example, the initial team at Google working on the self-driving car 
consisted of Google-X employees with engineering and AI experience.  The team could have 
eventually learned the complex complementary AI know-how internally, but instead Google-X 
collaborated with a specialist previously running the Stanford Artificial Intelligence Laboratory at 
Stanford University, Sebastian Thrun (Dallon 2017).  However, Dr. Thrun’s also had the viable 
choice to join the team or work on different applications since his skillset was rare. 

The AI anecdote illustrates how recombining external specialized know-how with internal 
domain knowledge can help research teams move from access to ability to use a new tool.  It also 
suggests that complexities in a domain may influence the match between internal domain teams and 
external know-how.  External tool specialists may be attracted to teams doing more complex and 
influential work when their skillsets are in demand and scarce.   

2.1 Research Tool Adoption and Innovation 

Research tools are types of inputs to innovation distinct from human capital in a domain.  
Tools are integral to technological progress in an application domain because they often embed their 
own know-how, allowing users to apply the tool without understanding why it works (Mokyr 2002).  
Access to these tools helps to lower the costs of research to innovators in the domain and invites 
those outside of the domain to make new contributions (e.g., Furman and Stern 2011; Williams 
2013; Murray et al. 2016; Teodoridis 2017; Furman and Teodoridis 2018).   
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Much of the traditional adoption literature focuses on the diffusion of products throughout their 
lifecycles and their role in economic growth or social returns.  Related literature discusses the types 
of individuals who adopt these products, but neither focuses directly on the role of research tools in 
creating innovations.  Some of the earliest work on product adoption looked at the social rate of 
return to hybrid corn research (Griliches 1957, 1958) and showed that although there is a high 
return to investment, it takes time for products to diffuse due to both availability and acceptance.  
Locations most in need of the new product will likely adopt it sooner, but even within an area 
diffusion occurs in an “S-shaped” pattern as some individuals wait to adopt.  Complementary work 
on adopter types showed that the earliest product adopters at the beginning of the S-curve are 
influential in their fields, have resources to adopt, and have the ability to incorporate the new 
products (Rogers 1962). 

The literature on general purpose technologies (GPTs) also focuses on the role of technological 
progress to economic growth.  GPTs can be technologies such as semiconductors (e.g., Bresnahan 
and Trajtenberg 1995), steam engines (Rosenberg and Trajtenberg 2004), or information and 
communication technologies (e.g., David 1990).  GPTs generally are considered enabling 
technologies that encourage economic growth in a large range of downstream sectors through a 
positive feedback loop between a GPT producer and downstream markets as each makes 
complementary improvements to the GPT (Bresnahan and Trajtenberg 1995).  Different sectors 
may delay adopting the GPT depending on when it is most valuable.  

Innovation as an outcome for research tool adoption is more common in empirical work that 
focuses on access.  Access to research tools has been shown to lead to an increase in the rate and 
changes to the direction of innovation in a number of settings (e.g., Moser 2005; Azoulay et al 2009; 
Furman and Stern 2011; Williams and Sampat 2015; Murray et al. 2016; Teodoridis 2017).  
However, these papers tend to focus on access to tools that reduce the cost of research quickly with 
little tool-specific know-how needed.  Further, it is assumed that the new and broader work is due to 
innovators using the tool they can now access.  That mechanism is not assured though since the tool 
is rarely tied directly to the new papers or products. 

Furman and Teodoridis (2018) have one example of tool know-how interacting with different 
domains, but even in the case of Kinect, the tool is assumed to reduce the cost of research at the 
time of access with little variation.  Therefore it is not possible to use the difficulty of applying the 
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tool to understand how tool specific know-how is incorporated.  Further the authors, by necessity, 
assume that the internal and external researchers they study are using the Kinect tool.  Nagle and 
Teodoridis (2017) take a more direct look at the role of researchers who use Kinect and show that it 
is generalists who tend to bring the new tool into teams.  Once again, because the costs of Kinect do 
not vary by domain, they cannot address how their outcomes might change as the tool is more 
difficult to use and the problems become more complex or influential. 

This paper adds to the literature on research tool adoption and innovation by introducing a 
way to empirically observe innovations directly due to a tool that not only requires complementary 
know-how to use but the amount necessary varies by application domain.  It also uniquely shows 
both the nature of the problem and the nature of tools available for innovation affect successful 
team composition, not just features of management, organizational structure, or industry.   

2.2 Research Tools and Complementary Know-How 

Many tools that have been historically important for technological advancement are those that 
eventually embed the necessary know-how in the physical product including hammers, scissors, 
microscopes, steam engines, automobiles, or telephones.  For these, the decision to adopt is mostly 
rooted in access to the tool.1  However, some tools when first introduced do not embed necessary 
know-how and require the user to learn complementary know-how even after obtaining access.  For 
example, tools like early wind tunnels, the first computers, or early software packages like STATA 
all embedded some of the underlying knowledge of physics, computing algorithms, or statistics.  
However, users required additional knowledge of the tool in order to apply it to different problems.  
For example, the earliest versions of STATA could run multiple regression analysis directly, but 
time-series analysis and other more advanced statistical models still needed to be programmed by 
the user (Pinzon 2015). 

The above might suggest that tools should be classified dichotomously – those that need no 
additional know-how and immediately lower learning costs versus those that need a host of 
complementary know-how to bring learning costs down.  However, this is an oversimplification.  
Instead, it is possible to think of tools appearing on a continuum based on the amount of 

                                         
1 Although, at introduction, many tools embed less of their own know-how than they do after they become more routinized. 
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complementary know-how needed to employ the tool in a domain at a particular time.  Some tools 
like hammers are introduced with all necessary embedded know-how so their positions on the 
continuum generally do not change over time.  Other tools embed a greater amount of knowledge 
over time.  Continued use of these tools bring about improvements in performance and modifications 
that embedded more knowledge in the tool itself.  For example, as users created code for more 
advanced statistical models, later versions of STATA included those updates so that non-
statisticians could apply the models just as easily.  Thus later versions of the tool can appear in 
different locations on the continuum than the original.  Finally, the same tool can appear in 
different locations on the continuum based on the application domain at a given point in time. 

If tools lie on a continuum of least to most necessary complementary know-how, then there is a 
range of tools that require the user to learn complementary know-how as an additional input to 
innovation.  One option for adoption of tools within this range is to delay until the tool is improved 
and embeds enough needed know-how, which is an aspect of adoption discussed in the adoption 
literature (e.g., Griliches 1957, 1958).  However, our understanding of how early users adopt tools 
when this complementary know-how is still needed is incomplete.  Understanding how early teams 
form to effectively adopt tools that require complementary know-how and use them in innovations 
provides a better idea of the choices that shape early adoption and the innovative paths that are 
formed from these early decisions by successful teams. 

For teams already in an application domain that want to be early adopters, they can choose to 
learn the necessary know-how internally or they can collaborate with external tool specialists, those 
that acquired the tool know-how independent of a domain.  However, external tool specialists are 
scarce in this early stage and can choose in which domains to work.  Effective collaborations will 
only occur in domains where there are sufficient incentives for both sides. 

2.3 Domain Team Choices 

Over a range of domains where a newly introduced tool requires the user to learn 
complementary know-how, teams that want to be early adopters face a form of the “make or buy” 
problem (e.g., Coase 1937; Williamson 1971, 1975, 1985; Grossman and Hart 1986).  Teams can 
invest time learning the tool know-how internally (through the team leader or another team 
member).  Alternatively, they can choose to acquire the know-how from external tool specialists who 
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developed human capital in the tool independent of the domain (e.g., Cassiman and Veugelers 2006 
and Grigoriou and Rothaermel 2017).  However, in order to successfully use external knowledge, an 
organization must not only have access to the new knowledge but must also have the resources and 
ability to incorporate it (Cohen and Levinthal 1990). 

The choice to internally learn the complementary know-how or acquire it from external tool 
specialists involves weighing the costs and benefits of each option.  For example, learning internally 
has the benefit of providing the internal domain team control over its work, making it more self-
sufficient for future innovations.  The drawback is that learning a new tool can take time, possibly 
causing the team to give up a first mover advantage (Jones 2009).  Collaborating instead with 
external specialists can reduce the time it takes to apply the tool since the specialists bring the 
complementary know-how with them (e.g., Arora and Gambardella 1994; Wuchty et al. 2007; Uzzi 
et al. 2013).  However, collaborations have inherent frictions that need to be overcome before the 
tool can be applied so there is a risk that the collaboration could fail (Cummings and Kiesler 2007; 
Bikard et al. 2015).   Internal domain teams will seek external tool specialists if the difference 
between the costs and benefits of collaborating is greater than the difference between the costs and 
benefits of learning internally. 

2.4 External Tool Specialists Choices 

Although innovation often emerges from a recombination of previous ideas (e.g., Scotchmer 
1991; Fleming 2001; Kaplan and Vakili 2015), researchers need both access to a tool and the ability 
to incorporate specialized tool know-how (Teece 1986; Scotchmer 1991; Weitzman 1996; Fleming 
2001) to successfully innovate.  However, access does not necessarily lead to the ability to use a tool 
(e.g., Ahuja & Katila 2001; Zahra and George 2002; Thompson and Zyontz 2017). External tool 
specialists can contribute to the innovation process by sharing information about how to use the 
new technology (Polanyi 1962; Zucker and Darby 2001; Murray 2002).   

When a research tool is introduced, the stock of external tool specialists is initially small.  If 
there is a rush to use the new tool, scarce external tool specialists can choose the teams and domains 
where they wish to share their complementary tool know-how.  If external tool specialists choose to 
collaborate with a team, it may be because collaborations are increasingly common and they have 
been shown to result in higher productivity and higher quality ideas (Adams et al. 2005; Stephan 



 

 
Page 11 of 53 

2012; Gans and Murray 2014).  By collaborating with teams in easier domains where the tool needs 
less complementary know-how, external tool specialists can be more productive and broadly apply 
the tool to more domains quickly.  On the other hand, by collaborating with teams in difficult 
domains where the tool needs more complementary know-how, external tool specialists can work on 
more challenging and complex problems where the possible solutions are highly influential.  The 
external tool specialists’ choice creates a two-sided matching market for the scarce human capital in 
the complementary tool know-how.  Internal domain teams and external tool specialists will only 
collaborate in domains where there is a match on both sides. 

Given the costs and benefits of collaboration to internal domain teams and external tool 
specialists, it is not ex ante obvious which kinds of domains are likely to attract external tool 
specialists into collaborations more often.  However, it should be the case that the ex ante difficulty 
of an application domain will determine where the successful matches occur.  To test how early 
teams acquire specialized complementary tool know-how to produce innovations, the recent 
introduction of the DNA-editing tool, CRISPR, provides a novel setting where the knowledge bases 
of the earliest innovators can be separately identified using natural variation in CRISPR’s entry into 
different domains.  The next section describes CRISPR and useful factors of the setting. 

3 Gene Editing with CRISPR 

CRISPR provides a unique setting for exploring how innovative teams acquire specialized 
complementary tool know-how.  First, CRISPR was an unexpected shock to gene editing researchers 
and the DNA-editing tool’s use has exploded since its introduction.  Second, access to the tool is 
widely available through the biological resource center Addgene, alleviating the need for material 
transfer agreements between labs.  Third, CRISPR can be applied to many different disease domains 
but was not developed for a particular application.  The difficulty of applying CRISPR to different 
diseases varies based on natural properties of the cells to be edited.2 

                                         
2 Further details on CRISPR and its introduction to gene editing beyond those provided in this section can be found in Zyontz (2016) and 
Thompson and Zyontz (2017). 
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3.1 Gene Editing Before CRISPR 

DNA editing has led to many advances including the creation of model organisms and the 
modification of existing organisms since its introduction in the early 1970s.  These advances allowed 
researchers to better understand human disease and to create useful products like pesticide resistant 
crops.  For bacteria or other prokaryotes that have cells without nuclei, relatively easy editing 
techniques existed prior to CRISPR.  However, for higher-order species, like mammals, even recent 
editing alternatives like Zinc Finger Nucleases (ZFN) and Transcription Activator-Like Effector 
Nucleases (TALENs) (Moscou and Bogdanove 2009; Boch, et al. 2009) are difficult and time-
consuming to use.  Despite this, TALENs was chosen as “Method of the Year” in 2011 (Method 
2012) because of the advancements it represented.  Only a few months later, CRISPR came as a 
surprise to researchers working in gene editing.  The new CRISPR tool acts like a pair of universal 
DNA scissors that work across organisms and is a much more flexible option for DNA editing than 
any other tool, especially for complex organisms like mammals. 

3.2 CRISPR 

The exact purpose and function of CRISPRs, short for Clustered Regularly Interspaced Short 
Palindromic Repeats, were not well understood until 2007 when it was discovered that the unique 
DNA sequences are an adaptive part of the bacterial immune system (Barrangou et al. 2007).  
Bacteria use CRISPR sequences to recognize viral DNA and then use a related enzyme (often the 
Cas9 protein) to cut up invading viral DNA and destroy the virus.  

In June 2012, Professors Jennifer Doudna and Emmanuelle Charpentier at the University of 
California, Berkeley first introduced a modifiable CRISPR system for DNA editing (Jinek et al. 
2012). Doudna and Charpendier proved in test tubes that the CRISPR system could find and edit 
any DNA sequence (not just viral) using programmed guide sequences to direct the cutting enzyme 
to the right place in the DNA. Doudna and Charpentier’s work provided proof of concept that the 
CRISPR system could edit organisms like bacteria. In January 2013, MIT Professor Feng Zhang and 
his collaborators showed that the CRISPR system could also edit mammalian cells, including human 
cell lines (Cong et al. 2013). This work and the related work of George Church and his colleagues at 
Harvard Medical School (Mali et al. 2013) demonstrated the flexibility and ease of use of the new 
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CRISPR tool.  This was particularly welcomed in the mammalian research community, including 
those working on human cells, because of the enormous improvement in terms of accuracy and 
difficulty over previous methods.   

To understand how CRISPR works, consider the find-and-replace function in a word processing 
program.  To replace the word “absolutely” with “certainly,” the user only need to put in the two 
strings and the program will find all instances of the string “absolutely,” cut it out of the document, 
and replace it with the second string.  CRISPR works the same way: program a DNA sequence to 
find the same string in the DNA of an organism, use an enzyme to cut out that string, and then use 
a second programmed string as a replacement in the organism’s DNA.  One of the main benefits to 
CRISPR is that it can look for the equivalent of the full word “absolutely.”  Previous editing 
technologies could only search for a short string, like the equivalent of “abs.”  In the find-and-
replace analogy, this short string would find “absolutely” but also “abstract,” making the edited 
document (and edited DNA) unreadable.   

The enthusiasm from researchers conducting gene editing to the release of the CRISPR tools 
was almost immediate because of its accuracy, flexibility, and relative ease of use (Pennisi 2013; 
Regalado 2014).  Since Doudna and Charpendier’s first paper in June 2012 through December 2016, 
over 4,500 CRISPR-related articles were published according to the medical publication database 
PubMed.  Patent applications mentioning CRISPR and funding for venture backed firms licensed to 
use CRISPR technology have also soared (Ledford 2015).  By December 2016, over 3,000 patent 
applications published worldwide mentioned CRISPR.  Funding also flowed to CRISPR 
commercialization efforts.  The original biotech firms founded on CRISPR technology, Caribou 
Biosciences (Berkeley, CA), Editas Medicine (EDIT; Cambridge, MA), CRISPR Therapeutics 
(CRSP; Basel, Switzerland), and Intellia Therapeutics (NTLA; Cambridge, MA) collectively raised 
initial funding of more than $150 million.  The last three all had IPOs in 2016, each currently with 
market capitalizations of over $1 billion. 

CRISPR’s effect on biological research has been profound, as geneticist John Schimenti at 
Cornell University noted: “I’ve seen two huge developments since I’ve been in science: CRISPR and 
PCR… CRISPR is impacting the life sciences in so many ways” (Ledford 2015).  One of the original 
inventors, Jennifer Doudna, stated in a February 2015 JAMA editorial, “This discovery has 
triggered a veritable revolution as laboratories worldwide have begun to introduce or correct 
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mutations in cells and organisms with a level of ease and efficiency not previously possible.” 
(Doudna 2015).  CRISPR has already been used to create blight resistant crops (Wang et al. 2014) 
and “malaria-proof” mosquitoes that are genetically unable to transmit malaria (Gantz et al. 2015).  
The introduction of CRISPR is likely to be especially useful in medical applications since it may 
ultimately allow for the correction of genetic errors.3  Currently, it is allowing researchers to build 
mouse and human cell disease models more easily with specific mutations that are useful for testing 
drugs. For example, Feng Zhang’s lab has created a “Cas9 mouse” (Platt et al. 2014) that can be 
modified to model lung cancer.  Before CRISPR, creating such a mouse model took large teams of 
people and a decade to complete, but this model was designed by one person with CRISPR in four 
months (Specter 2015). 

3.3 Access to CRISPR with Addgene 

Laboratories often use material transfer agreements to transfer tools from one institution to 
another, often delaying adoption of the tool (e.g., Mowery and Ziedonis 2007; Walsh, Cohen, and 
Cho 2007; Strandberg 2010).  To circumvent the difficulties associated with lab-to-lab material 
transfers, biological resource centers, such as the American Type Culture Collection, are created to 
centralize the distribution process (Furman and Stern 2011).  The dominant central repository for 
CRISPR, from the first day, is Addgene.  In 2004 Melina Fan, Kenneth Fan, and Benjie Chen 
founded Addgene as a non-profit biological resource center for scientists to easily share tools4 for use 
in biological research (Fan et al., 2005).  Addgene not only stores biological tools donated by 
academic researchers all over the world, but also validates the materials and facilitates their 
distribution to other academic institutions in more than 85 different countries and counting.  

When the CRISPR tool was first introduced in 2012 and 2013, Doudna, Charpendier, and 
Zhang donated their versions to Addgene at the time the original papers were published. As Zhang 
said in a talk at MIT in 2015, he gave CRISPR to Addgene for distribution because his lab 
“wouldn’t have time to do science” if they responded to all the requests from other researchers.  
Indeed, to date, Addgene has sent more than 42,000 CRISPR tools from Zhang’s lab to over 2,000 

                                         
3 This has already been done in non-viable human embryos (Ma et al. 2017) and may have been done in viable embryos resulting in gene 
edited babies as recently as November 2018 (Cyranoski 2018). 
4 The tools donated to Addgene, including CRISPR, are usually distributed as plasmids.  A plasmid is a form of circular DNA that is 
commonly used to replicate or expand upon gene editing experiments.  See https://www.addgene.org/ for available tools. 
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institutions (Zhang 2018).  As new CRISPR tools have been developed, they have also been donated 
to Addgene.  CRISPR orders quickly rose from 0.1% of all Addgene orders in 2012 to about 18% in 
2015 (Figure 1).  To date, CRISPR is one Addgene’s most popular tools, making up over 20% of 
total orders. 

[Insert Figure 1 about here] 

Addgene has a price of $65 per plasmid which has remained constant since 2004.  This stable 
low cost and consistent quality control process encourages labs to order directly from Addgene 
rather than make their own or attempt to get it from the original lab.  Addgene alleviates the 
burden on the individual research labs and separates access to the tool from the original inventor. 

3.4 Variation in Availability of CRISPR by Disease Domain 

When the CRISPR tool was first introduced in 2012, it came as such a surprise that it was 
not designed with a specific application in mind.  However, some of the greatest strides forward have 
come from mammalian gene editing particularly in human diseases (Zyontz 2016).  The co-founders 
of CRISPR argue that the tool could be useful for the study and eventual treatment (or even cure) 
of most human diseases caused by to genetic mutations (Doudna and Sternberg 2017; Whitaker 
2018), making CRISPR a valuable tool for research in all of these domains.  Despite CRISPR’s 
generality, natural barriers in gene editing prevent CRISPR from being available for all disease 
domains at the same time.  Availability variation is due in part to the type of cell primarily targeted 
by the disease, which affects how CRISPR must be delivered to the nucleus of the cell (e.g., 
Regalado 2016, Stockton 2017, Kaiser 2016, Wang et al. 2016, LaFountaine et al. 2015).  One of the 
co-founders of CRISPR, Jennifer Doudna, notes in her book, “That’s not to say that it’ll be easy to 
get CRISPR inside the cells themselves.  This delivery problem is one of the greatest challenges” 
(Doudna and Sternberg 2017). The more complicated the disease and cell type, the more difficult it 
is to deliver and use CRISPR, which provides natural delays that vary by disease as researchers 
overcome the delivery barrier. 

Some of the easiest diseases to edit with CRISPR involve cells that quickly self-replicate and 
can be edited ex vivo.5  For example, blood cells can be easily removed from an organism, edited 

                                         
5 In ex vivo (exterior) gene editing, target cells are first modified outside a living organism.  The edited cells are then returned to the 
organism as an effective treatment for the disease. 
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with CRISPR in a dish, and then the modified cells are put back in the organism (Regalado 2016).  
Because blood cells replicate easily, the new ones will replicate with the edit and eventually overtake 
the old damaged cells. T-cells associated with immune deficiencies can also be successfully edited ex 
vivo.  Recently CRISPR was used to edit infected T-cells and eliminate HIV in mice (Stockton 
2017). 

More complicated diseases to edit with CRISPR involve cells that can self-replicate but may 
not be prime targets for ex vivo editing.  For example, using CRISPR to study diseases in muscle 
tissue is more difficult than blood cells (Regalado 2016).  Studies are underway to treat Duchenne 
muscular dystrophy (DMD) (LaFountaine et al. 2015), but edits must be made to all damaged cells, 
which cannot be done effectively ex vivo.  Treating DMD requires a delivery mechanism that targets 
the affected cells, is large enough to deliver the CRISPR system in the organism, and does not make 
the individual sicker. 

Some of the most difficult diseases to study and treat with CRISPR are those involving cells 
that do not replicate and cannot be edited ex vivo, such as diseases in the brain or nervous system 
(Regalado 2016, Kaiser 2016, LaFountaine et al. 2015).  Brain cells and nerve cells are generally 
difficult to manipulate in a lab setting and because their interconnections matter, studies generally 
are conducted in vivo.6  Again, this results in a delivery problem, where the engineered CRISPR 
tools are too large for standard delivery mechanisms.  Work is being conducted to shrink the size of 
the cutting enzymes and to find alternative delivery mechanisms (Wang 2016), but the additional 
limitations have delayed research in these areas.  For example, CRISPR has only appeared in 
Huntington’s Disease publications since 2017. 

There are already a number of reported possible therapeutic applications of CRISPR 
(LaFountaine et al. 2015) including cystic fibrosis (2013), HIV-1 (2013), sickle cell anemia (2014), 
Hepatitis B (2014), Duchenne muscular dystrophy (2014), HPV (2014), and a range of cancers.  
This suggests that applications where CRISPR is easier to use generally gain access to CRISPR 
sooner.  Although no clinical trials with CRISPR were approved in the U.S. until 2018. 

                                         
6 In in vivo (interior) gene editing, target cells are modified while still inside the living organism. 
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4 Methodology 

4.1 Using the CRISPR Setting 

As discussed in Section 2, external tool specialists can add value to the innovation process by 
sharing information about how to use the new technology across a range of domains. The match 
between internal domain teams and external tool specialists to create new innovations with the tool 
could occur more frequently in easier domains, where less complementary tool know-how is needed, 
in order to apply the tool more broadly or in more difficult domains, where more complementary 
tool know-how is needed, where the problems are more complex but influential.  However, 
empirically identifying where external tool experts contributed most often to the application of a 
new tool, beyond just access, is a complex task as tool and domain knowledge often develop 
concurrently or access is conflated with the ability to use the tool (e.g., Furman and Stern 2011; 
Murray et al. 2016; Teodoridis 2017).   

In order to identify where external tool specialists appear more often to create early innovations 
with a tool, an ideal setting would need to have several main features.  First, it must be possible to 
separately track external tool specialists and domain specialists within teams that generate early 
innovations.  Second, the sharing of know-how by external tool specialists must be separable from 
any access to the tool they may provide in order to identify their value-added contributions.  
Finally, when the new tool is introduced, the difficulty of using the tool must vary across domains 
and the tool should randomly enter different domains to mitigate selection based on the value of the 
tool to the domain.  Such an environment does not occur naturally, but the recent introduction of 
CRISPR provides a unique and approximate setting for this ideal. 

As discussed in Section 3, CRISPR was an unexpected, powerful tool that had the potential to 
lower the costs of research and create new possibilities in gene editing.  Because of its unexpected 
nature, gene editing scientists did not anticipate its arrival or the future advances the tool would 
eventually allow.  CRISPR can be used in a wide range of organisms including bacteria, yeasts, 
plants, insects, and mammals.  However, previous research has shown that scientists who conduct 
gene editing on organisms from different branches on the biological tree of life (e.g., bacteria versus 
mammal) have different uses for the tool and value CRISPR differently (Zyontz 2016).  This argues 
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for focusing on researchers most at risk for using CRISPR, namely scientists conducting research on 
mammalian cells.  During the earliest period of CRISPR adoption (2012-2016), these scientists are 
mostly academic scientists publishing in academic journals. 

To ensure that different domains do not adopt CRISPR only when it is most valuable, it is 
necessary to find areas of mammalian research where scientists want to use CRISPR immediately, 
but cannot for some biological reason.  Fortunately, research in almost every DNA-altering human 
disease would benefit from CRISPR due to its improvements over the previous tools.  CRISPR co-
inventor Feng Zhang supported this claim in a recent interview saying, “There are about 6,000 or 
more diseases that are caused by faulty genes. The hope is that we will be able to address most if 
not all of them” (Whitaker 2018).  However, not every disease received CRISPR at the same time.  
The timing of CRISPR’s introduction to each disease was not anticipated due to natural delays 
caused by the biology of the cells affected by the disease, as highlighted in Section 3.7 

By restricting attention to human diseases caused by mutated genes, including infections, 
viruses, and inheritable diseases, the setting provides a way to separately identify external tool 
specialists and domain specialists.  CRISPR was introduced first as a tool in June 2012 with no 
specific human disease application.  Since the first human disease application occurred in 2013, there 
was time for scientists to gain CRISPR-specific tool knowledge outside of any particular disease 
domain.  Applying this initial delay and the unanticipated timing of CRISPR appearing in different 
human diseases, it is possible to identify which authors were specialists in CRISPR prior to 
publishing in the disease.  Figure 2 provides an example of the natural delays in CRISPR entry for 
selected diseases from first introduction of the tool. 

[Insert Figure 2 about here] 

Finally, science settings are not always ideal for identifying the contributions of external 
specialists beyond providing access to the tool.  Biological materials are often transferred from one 
lab to another using Material Transfer Agreements (MTAs) that can delay access or have been 
known to require co-authorships for the receipt of the materials (Walsh, Cohen, and Cho 2007; 
Strandberg 2010).  This can confound the value added by external tool specialists in innovation.  

                                         
7 Certain diseases attract more attention and funding which could mitigate delays in receiving CRISPR.  However, the exact timing of 
CRISPR’s arrival in these diseases still could not be anticipated ex ante. 
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The CRISPR setting circumvents these concerns by having a biological resource center that breaks 
the link between contracting for access and needing to work with external specialists to use the tool.  
Addgene is the primary third-party distributor of CRISPR to academic researchers that eliminates 
the need for scientists to sign MTAs directly with other academics.  Thus any external specialists 
observed entering a new domain in this setting primarily represent value added knowledge rather 
than the price of access to CRISPR. 

4.2 Empirical Specifications 

To explore how early teams acquire complementary know-how to use new tools for innovation, 
the empirical specifications in this paper test the relationship between the share of external CRISPR 
tool specialists authoring CRISPR papers in a set of disease domains and the difficulty of editing the 
cell targeted by the disease.  The focal population consists of all successfully published CRISPR 
articles in a set of human diseases and their authors.  The level of analysis is at the disease-quarter 
from Q1 2013, the first quarter a CRISPR disease application appeared to Q4 2016.  The vast 
majority of the disease quarters only contain one CRISPR-disease paper, so the share of external 
CRISPR specialists can be interpreted as the relative participation of external CRISPR specialists 
on the team for one paper (or innovation).  The specifications also consider the unanticipated timing 
of CRISPR’s entry by disease. 

The main specification tests the overall impact of target cell editing difficulty on the share of 
external CRISPR specialists who are authors on CRISPR publications in a disease.  The model 
controls for the quarter of publication and the amount of time since the first CRISPR paper in the 
disease to account for factors specific to the quarter or the trend of additional papers.  The model 
also controls for the total number of publications in a disease quarter as a proxy for the attention 
and funding a disease may receive. 
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Share of External CRISPR Specialistsit = The number of CRISPR paper authors that are 

external CRISPR specialists divided by the total 
number of CRISPR paper authors by disease domain 
(i) and quarter (t). 
 

Edit Difficultyi = 1 if the target cells of the disease (i) cannot be edited 
ex vivo (No Ex Vivo) or do not self-replicate (No Cell 
Replication); 0 otherwise.  Two separate variables. 
 

Total Disease Pubsit = The total number of papers in disease domain (i) and 
quarter (t). 
 

D7 = Fixed effects for the quarter (t) of publication. 
 

DEFG = Fixed effects for the difference between the focal 
quarter of publication (t) and the quarter of the first 
CRISPR publication in a disease domain (i). 

H67 = Error term. 
 

In this model, the coefficient of interest is 9<, which is the relationship between disease cell editing 
difficulty and the share of external CRISPR specialists in teams that publish CRISPR papers in a 
disease.  A negative coefficient would support the idea that internal domain teams and external tool 
specialists match more often in easier domains that can help increase productivity and encourage 
broader use of the tool.  A positive coefficient would support the idea that internal domain teams 
and external tool specialists match more often in difficult domains to effectively address more 
complex but influential problems. 

The second specification tests whether the share of external CRISPR specialists increases or 
decreases for subsequent innovations after the first in difficult diseases.  It is similar to the first 
specification above, but adds an interaction term and disease (i) fixed effects. 
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Where Qtr from First Pub is the difference between the focal quarter of the publication (t) in a 

disease (i) and the first CRISPR publication quarter in the disease.  The coefficients of interest in 
this model are IEFG which are the changes in the share of external CRISPR specialists authoring 

subsequent CRISPR papers in a disease for difficult to edit target cells.  Positive coefficients indicate 
that a higher share of external CRISPR specialists participate in additional innovations in domains 
where CRISPR is more difficult to use, even after controlling for time effects, age effects, disease 
effects, and the attractiveness of the disease. 

All specifications are run initially as OLS models since the outcomes have a continuous response 
between 0 and 1.  However, because the outcome is fractional and has some weight on 0 and 1 
values, simple linear models lead to predictions outside the possible range.  To mitigate this concern, 
all specifications are also run as Generalized Linear Models (GLM) with binomial family and logit 
link.  The latter specification is as outlined by Papke and Wooldridge (1996) who showed that 
quasi-maximum likelihood estimation (QMLE) for pooled fractional response models results in 
robust estimators.  The direction and significance of the results are similar regardless of model used, 
although the coefficients have different interpretations. 

5 Data and Measures 

5.1 Database Construction 

Because CRISPR can be traced to a handful of initial papers and because of the explosion of 
interest in the tool, it is possible to find the entire population of academic scientists using CRISPR 
in human diseases, and not just a sample.  The database starts with all articles and authors in the 
U.S. National Library of Medicine’s (NLM) PubMed database from 2007-2016, providing 
approximately five years before CRISPR and five years after. PubMed includes the NLM’s 
MEDLINE journal citation database and contains 28 million citations for biomedical literature 
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including the fields of biomedicine and health, making it a definitive source for original research in 
human diseases. 

In order to identify the relevant disease domains used in this study the keywords assigned by the 
NLM to each paper were used.  These keywords are the Medical Subject Headings (MeSH Terms), a 
controlled vocabulary that consistently classifies each document in PubMed.  First, a list of terms 
was collected from Category C (Diseases) in the 2017 MeSH Tree.  Only keywords describing human 
diseases caused by DNA mutations were used to define the domains at risk of using CRISPR, 
including terms for cancers, infections (such as HIV), and inheritable monogenic diseases.8  Next, all 
papers in PubMed from 2007-2016 containing the MeSH Terms for the at-risk diseases were 
identified.  Papers were restricted to original scientific articles and do not include documents like 
reviews, news, or other non-experimental articles.  From there, the database was further restricted 
to papers (and associated authors) that contained both a disease MeSH term and a CRISPR MeSH 
term. 9  The final database contains the CRISPR papers in 228 disease domains published between 
Q1 2013 – Q4 2016.10  Because of the different CRISPR entry dates, some disease domains appear 
earlier than others for N = 442 disease-quarters in the database. 

Within the 228 disease domains, there are 611 papers containing both disease and CRISPR 
MeSH Terms.  For each author on the 611 joint papers, his or her publication history in a disease 
domain and CRISPR was constructed using the following procedure.11 First for each disease domain, 
a sub-database at the author-paper level was constructed containing every person in PubMed that 
authored a paper in the focal disease or CRISPR (as defined by the MeSH Terms) from 2007 - 2016.  

Second, within that sub-database, author names across papers were matched using full first 
names, last names, and middle initials.  In order to mitigate false matches across papers, authors 
with last names in the top 5% of all author names had to have exact matches for the last name, first 
name, and middle initial in order to be considered the same person.  Authors with last names in the 
lower 50% of all author names (very uncommon names) only had to have their last name and first 

                                         
8 Monogenic diseases, although rare, affect a wide range of cell types and are identified by a well-known inherited single mutation in a gene, 
for example sickle cell anemia.  These are prime targets for CRISPR since there is only one gene to edit and both the mutation and the 
correct sequence are known. 
9 Because CRISPR was unexpected, the MeSH Terms for the tool did not appear immediately.  They were added to papers in 2013, 
however.  A check for CRISPR in the abstracts did not reveal any earlier disease domains or papers. 
10 The list of disease domains and associated MeSH terms are on file with the author. 
11 Papers are generally exclusive to one disease category. 
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initial match to be considered the same person.  All others required an exact match of the full first 
name and last name to be considered the same person.12   

Third, scientists were classified as CRISPR-disease paper authors if they authored one of the 611 
papers that contained both disease and CRISPR MeSH Terms.  Records from all other authors were 
dropped, leaving only the publication histories of the CRISPR-disease paper authors.   

Fourth, using MeSH Terms, these remaining papers were classified as CRISPR Only (if the 
paper only had CRISPR MeSH Terms), Disease Only (if the paper only had Disease MeSH Terms), 
or CRISPR-disease (if the paper had CRISPR and Disease MeSH Terms).  A CRISPR-disease 
author was classified as an external CRISPR specialist if he or she published a CRISPR Only paper 
first before any CRISPR-disease papers or Disease Only papers.13   

Finally, authors with no identifiable publication history in CRISPR or the disease, usually 
graduate students or non-key contributors, were dropped from the sub-database.  All non CRISPR-
disease papers were dropped as well to focus only on the published innovations with CRISPR in 
each disease domain. 

This process was repeated for each disease domain for a total of 228 sub-databases.  These were 
joined into one large author-paper-disease level database with 3,019 authors, 611 joint papers, and 
228 disease domains.  The final database used for the analyses collapses the data to the disease-
quarter level by calculating the number of total authors, external CRISPR specialists, and papers 
present in each quarter for each disease domain from Q1 2013 – Q4 2016 in 442 observations.  The 
majority of disease-quarters only contain one paper, so the final database is similar to one 
constructed at the paper level.  More than half the disease domains only have one CRISPR-disease 
paper over the entire time period. 

5.2 Measures 

The main dependent variable is a measure of external tool specialist know-how that is used to 
generate innovations with the tool in a domain. Share of External CRISPR Specialists is calculated 

as the number of external CRISPR specialist authors on CRISPR-disease papers divided by the 

                                         
12 The code for the grouping algorithm is on file with the author. 
13 The majority of authors in a sub-database only have one CRISPR paper in a disease domain. 
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total number of authors on CRISPR-disease papers. External CRISPR specialists are those that 
published in CRISPR first before publishing in the disease or a CRISPR-disease paper.  This is 
measured quarterly by disease domain but due to the small number of CRISPR-disease papers, 
almost all disease-quarters only contain one paper.  Therefore, this measure is the relative 
participation of external CRISPR specialists on teams that create new papers (or innovations) with 
CRISPR in a disease. 

The main independent Edit Difficulty measures are binary and are different indicators of how 

difficult affected cells are to edit in each disease domain.  The difficulty of cell editing can be 
measured by biological factors of the cells primarily targeted by each disease.  Two key factors are 
(1) whether the cell can be edited ex vivo (edited outside a living organism and placed back in) and 

(2) whether the cell can self-replicate.  If the cell a disease targets cannot be edited ex vivo or if the 
cell does not self-replicate, then it will be far more difficult to use CRISPR in that disease (see 
Section 3).  The variable, No Ex Vivo is equal to 1 if the target cells cannot be edited ex vivo and 0 
otherwise.  The variable No Cell Replication is equal to 1 if the target cells do not replicate easily on 

their own and 0 otherwise. 

To code these two variables, for each disease domain the primary target cell category was 
determined using information from a number of sources including the Online Mendelian Inheritance 
in Man database (OMIM), the Genetic and Rare Disease Information Center (GARD), and a set of 
gene editing review articles (LaFountaine et al. 2015; Barrangou and Doudna 2015; Cox et al. 2015; 
Kelton et al. 2016; Riordan et al. 2016; Scott and DeFrancesco 2016; Wang et al. 2016; Xiong et al. 
2016; Bachtarzi 2017; Pandey et al. 2017; Singh et al. 2017; Song et al. 2017; Bakhrebah et al. 
2018).14  Then for each target cell category No Ex Vivo (National Academies of Science 2018; Cox et 
al. 2015) and No Cell Replication (Weizmann Institute of Science 2018) were coded.  For example, 
diseases that target blood or T-cells have No Ex Vivo and No Cell Replication both equal to 0 since 

they are easiest to edit.  Diseases that target muscle tissues have No Ex Vivo equal to 1 and No Cell 
Replication equal to 0 since effective editing is done within the organism.  Diseases that target 
neurons have No Ex Vivo and No Cell Replication both equal to 1 since they are hardest to edit. 

                                         
14 The associated cell category for each disease domain and the coding for No Ex Vivo and No Cell Replication are on file with the author. 
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The independent variable Quarters from First Pub is the difference in quarters from the 
publication of the first CRISPR paper in a disease domain to the publication quarter of the focal 
CRISPR paper in the disease.  The publications quarters for CRISPR-disease papers range from Q1 
2013 – Q4 2016 since there are no human disease applications for CRISPR prior to 2013. 

Finally, the independent variable Total Disease Pubs is a proxy for the attractiveness of the 

disease domain in terms of attention and possible funding.  It is calculated as the total number of 
academic articles by disease domain (not including reviews, news, and other similar documents) 
published from Q1 2013 through Q4 2016.  Articles are considered part of a disease domain if they 
contain MeSH Terms for those diseases. 

5.3 Summary Statistics 

The summary statistics for the CRISPR-disease papers and authors in the 228 disease domains 
by quarter is in Table 1.  Table 1 presents the statistics for all diseases and further breaks down the 
results by Easy Diseases and Difficult Diseases as defined by whether the target cell can be edited ex 

vivo or not.  On average by quarter, about 25% of the authors are external CRISPR specialists 
reinforcing the idea that domain-specific knowledge is important to the production of innovation in 
the domain but indicating that external CRISPR know-how plays a meaningful role across domains.  
The share of external CRISPR specialists is higher for teams writing CRISPR papers in difficult 
diseases at 33% versus 22% for easier diseases. 

The average team size on all CRISPR-disease papers is just under 7 people.  Yet the make-up 
of the team depends on the edit difficulty of the disease.  For example, CRISPR papers in more 
difficult diseases have more CRISPR tool specialists but also have fewer people overall, making the 
individual contributions of external CRISPR specialists larger. 

Further, a minority of diseases by quarter are those where CRISPR is more difficult to use.  
For example, 31% of diseases in a quarter have target cells that cannot be edited ex vivo and 17% 
have target cells that do not self-replicate.  On average, CRISPR-disease papers are published in Q4 
2015, supporting the fact that a number of diseases did not receive CRISPR until 2016, especially 
difficult diseases.  Also, additional papers generally occur more than six months after the first 
CRISPR-disease paper. 
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[Insert Table 1 about here] 

Table 2 provides the raw counts of authors and papers by the difficulty of cell editing (No Ex 
Vivo) and year of CRISPR-disease paper publication.  The results suggest that there was a delay in 
attracting authors and publications in the more difficult diseases as compared to their easier 
counterparts.  However, the share of external CRISPR specialists on teams publishing in difficult 
diseases quickly outpaced the share in easier diseases. 

[Insert Table 2 about here] 

This shift in more difficult diseases for authors and publications is due in part to the delayed 
entry of CRISPR into difficult to edit diseases.  Figure 3a plots the number of diseases by the year 
CRISPR entered and by whether the target cell can be edited ex vivo.  Figure 3b plots the number 
of diseases by the year CRISPR entered and by whether the target cell can self-replicate.  For 
diseases where the target cells are more difficult to edit, CRISPR took additional time to enter as 
compared to the easier to edit diseases.  Although, diseases that cannot be edited ex vivo overtook 
easier to edit diseases in 2016. 

[Insert Figures 3a and 3b about here] 

6 Results 

6.1 Disease Edit Difficulty and Share of External CRISPR Specialists 

As a way to explore where the match occurs between internal domain teams and external tool 
specialists for the earliest innovations, it is possible to test the relationship between disease edit 
difficulty and share of external tool specialists.  If domain teams and external tool specialists match 
most often to solve simpler problems where the tool can be applied more quickly to a larger range of 
domains, then the share of external CRISPR specialists on CRISPR paper teams should decrease for 
hard to edit diseases on average. If internal domain teams and external tool specialists match most 
often instead to solve complex and influential problems, the share of external CRISPR specialists on 

CRISPR paper teams should increase for hard to edit diseases on average.   
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First, to establish that external tool specialists are used across domains, Figure 4 plots the 
distribution of the dependent variable, Share of External CRISPR Specialists, for publishing teams 
by disease edit difficulty (here where the affected cell can be edited ex vivo).  External tool 

specialists are part of teams in domains that are both easier and difficult to edit, but the 
distribution is shifted towards a higher share of external CRISPR specialists for more difficult to 
edit domains. 

[Insert Figure 4 about here] 

Second, it is important to note that there are an increasing number of difficult to edit diseases 
with CRISPR availability and more available external authors with CRISPR know-how over time.  
Due to these facts, it should be expected that the share of external CRISPR specialists should 
increase over time for all diseases as the stock of CRISPR specialists increases each quarter.  Figure 
5a shows the increase in the number of authors over time for both easier to edit and difficult to edit 
diseases. Figure 5b shows similar trends for the number of external tool specialists on the research 
teams over time. 

[Insert Figures 5a and 5b about here] 

Figure 1A shows the relationship between the timing of publications and the share of external 
CRISPR specialists.  Between Q4 2014 and Q4 2016 the share of external CRISPR specialists 
increases each year with some cyclicality over quarters.   

Using the above facts, Table 3, Models 1-3 show fixed effect OLS regressions at the disease-
quarter level to look at the effect of disease edit difficulty on the share of external CRISPR 
specialists contributing to new CRISPR-disease papers.  From Table 3, Model 1, diseases with target 
cells that cannot be edited ex vivo have an increased share of external CRISPR specialists.  The 
direction is different for diseases with target cells that cannot self-replicate, although the estimate is 
much lower and is not significant (Table 3, Model 2).  Taken together the different types of edit 
difficulty do play different roles in affecting the percentage of external CRISPR authors (Table 3, 
Model 3).  Here, the effect of being a No Ex Vivo disease is enhanced by controlling for being a No 
Cell Replication disease. 
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The first three models in Table 3 run OLS specifications and control for the stock of external 
CRISPR specialists through the quarter of publication, the number of quarters the publication is 
from the first CRISPR paper in a disease, and the attractiveness of the disease domain.  Table 3, 
Models 4 – 6 have the same covariates and dependent variables but use a GLM with binomial 
family and logit link to account for the fractional outcome as discussed in Section 4.  Although the 
coefficients have a different interpretation, as expected, their direction and significance are largely 
the same.  The marginal effects of these coefficients are very similar to those of the standard linear 
models.   

[Insert Table 3 about here] 

Overall, the results support the idea that the successful match between internal domain teams 
and external tool specialists to create new innovations occurs in the difficult diseases where the 
problems are complex but solutions are highly influential.  These are the diseases that had no prior 
viable gene therapy alternatives. 

6.2 Share of External CRISPR Specialists in Subsequent Innovations 

If the increase in the share of external CRISPR specialists was a simple transfer of tacit 
information, it might be expected that the effect would attenuate for CRISPR-disease papers after 
the first.  Once the know-how is in the domain, it should not be necessary to have external CRISPR 
specialists on the team.  However, contrary to this expectation, the share of external CRISPR 
specialists increases for subsequent innovations in more difficult diseases.   

Figure 6 shows the differences in means for the share of external CRISPR specialists on 
CRISPR-disease papers for diseases that are more difficult to edit and those that are easier (by ex 
vivo editing), over specific periods of time.  For example, the first pair of bars illustrates the 
difference in the average percentage of external CRISPR specialists between diseases where target 
cells can be edited ex vivo and not for the very first paper.  CRISPR papers in difficult diseases (no 

ex vivo editing)  have a higher share of external CRISPR specialists when only considering the first 
CRISPR paper published in a disease.  The next pairs show the difference in means for additional 
CRISPR papers in a disease after the first one (i.e., excluding the first) in the first year, in the next 
year after, and in the remaining years.  More difficult diseases have higher average shares of external 
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CRISPR specialists, increasing over each time period.  Table A1 provides the underlying data for 
Figure 6. 

 [Insert Figure 6 about here] 

Because Figure 6 highlights the results from simple T-tests, Table 4a considers the interaction 
between subsequent innovations after the first and the edit difficulty of the disease while controlling 
for disease attractiveness as well as quarter, age, and disease fixed effects.  The results in Table 4a 
echo the trends found in Figure 6.  Table 4a, Model 1 includes an interaction term between the time 
distance of an additional innovation in a disease and disease edit difficulty (using the No Ex Vivo 

measure).  The results suggest that for diseases that are more difficult to edit and as additional 
innovation is more time-distant from the original joint paper, the share of authors with external 
CRISPR specialization increases.   

Table 4a, Model 2 breaks these interactions down further by the length of time the innovation 
appeared after the first.  As more time passes after the first paper, the share of external CRISPR 
specialists continues to increase during this very early stage.  Whether this pattern will continue as 
the tool matures is the subject of a future study as more time is allowed to pass.  Table 4a, Models 
3-4 show results in the same direction and significance levels for the analogous GLMs.  Figure 7 
plots the coefficients in Table 4a, Model 2 to illustrate the increasing trend in the share of external 
CRISPR specialists for subsequent innovations. 

[Insert Table 4a and Figure 7 about here] 

Because some diseases only have one CRISPR paper, it might be a concern that these diseases 
are different and influencing the results in Table 4a.  In order to account for that, Table 4b performs 
an identical analysis but only for the 93 diseases that have more than one CRISPR paper in the 
dataset.  The results are very similar, so including the entire dataset is not influencing the core 
findings for the OLS or GLM specifications. 

[Insert Table 4b about here] 
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6.3 Future Supplementary Analyses 

The results in Sections 6.1 and 6.2 are the first steps towards empirically understanding how 
the earliest teams acquire complementary tool know-how across domains with different levels of ex 
ante difficulty.  However, the analysis presented suggests several other areas of inquiry that can help 
to further this understanding.  For example, are there characteristics of external CRISPR specialists 
that attract some to difficult problems and others to easier ones?  As more data becomes available, 
it will be possible to exploit heterogeneity in adopters that does not currently exist in the data to 
test whether the tenure status of external CRISPR specialists plays a role in their attraction to more 
complex and influential problems.  It could be the case that tenured external CRISPR specialists 
have more incentives to aim for the Nobel Prize while non-tenured external CRISPR specialists just 
need to publish.  This could cause tenured external CRISPR specialists to seek out and match in 
more difficult domains.  

Other analyses are aimed at assessing the benefits to building versus acquiring the 
complementary tool know-how.  Specifically, the analyses address the questions do teams that use 
external CRISPR specialists get to publication faster? Does this change given domain difficulty?  
For this, team members on CRISPR-disease papers are being matched to their CRISPR order 
histories at Addgene to determine the earliest date the team received CRISPR and the length of 
time between the first order and the eventual publication.   

7 Discussion and Conclusion 

When a new tool is introduced that requires some investment in tool-specific know-how, how to 
combine that know-how with domain-specific knowledge is a decision firms, mangers, and individual 
innovators face as they innovate.  In general, innovators in a domain can either learn to use the tool 
themselves or can acquire the complementary tool know-how from an external source.  For example, 
firms face this choice when deciding how to use AI and individual academics may make similar 
decisions when deciding how to use STATA or Python in their work.  However, when external tool 
specialists are scarce, they also have a choice over which teams to join.  They could collaborate with 
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teams in easy domains to expand the use of the tool as far as possible or in difficult domains where 
the problems are more complex but the solutions are highly influential.  

Previous research has shown that access to research tools increases innovation but often access 
is conflated with the ability to use the tool, limiting investigations into how innovators use tools to 
generate innovations, especially if they are trying to be first.  One mechanism this paper highlights 
is the role of external tool specialists in generating early innovation by providing complementary 
know-how needed to use the tool.   

Using the introduction of the new breakthrough DNA-editing tool, CRISPR, and applying the 
unanticipated timing of CRISPR entry in different human disease domains, it is possible to 
separately identify the knowledge bases of the academic scientists responsible for the new articles 
that use CRISPR in a disease.  Because the analysis focuses on the first days of CRISPR (2012-
2016), these papers represent the earliest innovations in each domain with the tool.  It is also 
possible to create measures for the difficulty of applying CRISPR in the different disease domains.  
Human diseases primarily target certain cell categories and each category is easier or harder to edit 
based on biological factors specific to the cells.  For example, CRISPR is more difficult to apply in 
target cells that cannot be edited ex vivo or cannot self-replicate. 

The variation in the difficulty of applying CRISPR provides a novel lever to presents a direct 
mechanism for how new tools are adopted and incorporated into early innovations.  First, a higher 
share of external CRISPR tool specialists participate in early innovations with the tool in difficult 
disease domains.  This suggests the match between internal domain teams and external tool 
specialists occurs more often in domains with complex and influential problems.  To understand this 
result, consider the different experiences of CRISPR adoption in HIV and muscular dystrophy.  The 
human immunodeficiency virus (HIV) had one of the earliest introductions of CRISPR in part due 
to the targeted T cells being easy to edit and the large amount of previous research conducted on 
gene editing alternatives.  The first study using CRISPR to make new advances in HIV was 
published in 2013 by Yoshio Koyanagi, the PI of a Viral Pathogenesis lab at Kyoto University in 
Japan (Ebina et al. 2013).  He and his three co-authors, all part of the lab, had previous experience 
in HIV, but none specifically in CRISPR.  Although external CRISPR know-how would be useful in 
this case, the internal team ordered CRISPR from Addgene and modified it for their application but 
did not collaborate on the paper with an external CRISPR tool specialist outside of the domain.  In 
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contrast, muscular dystrophy targets muscle cells that are more challenging to edit and success 
would represent an enormous advance in medicine.  For the first paper that successfully used 
CRISPR inside a mouse to treat Duchenne muscular dystrophy, Charles Gersbach, a leading 
muscular dystrophy researcher at Duke University and his lab were having problems delivering 
CRISPR to the nucleus of the target cells.  To overcome this problem, the team incorporated the 
knowledge of Feng Zhang, a CRISPR co-founder, to create a new delivery solution.  The resulting 
paper lists both professors as contributing authors (Nelson et al. 2016; Duke Today Staff 2015).  The 
example suggests that authors in internal teams working on difficult and influential diseases are 
more likely to look for and attract external CRISPR specialists to collaborate. 

Second, there is evidence that the higher share of external CRISPR specialists persists for 
subsequent innovations in more difficult disease domains.  This result is not immediately intuitive. If 
research in the domain using CRISPR became easier after the tool was first introduced, then 
complementary know-how about the tool should be less valuable and external tool specialists less 
necessary.  However, in this setting, the ultimate goal is to use CRISPR to create commercial 
therapies and drugs for human use.  In order to do this, additional research in each disease will try 
to use the tool in increasingly complex organisms.  Even within mammals, as the organism gets 
closer to humans, editing becomes more difficult and the solutions more notable, attracting a higher 
share of external CRISPR specialists.  As an example, one of the first CRISPR experiments in 
muscular dystrophy was to deliver CRISPR inside a living mouse (Nelson et al. 2016).  The next 
step was to deliver CRISPR inside living dogs (Amoasil et al. 2018).  Note that the author teams for 
each organism are different.  This pattern of research is repeated in other diseases with more 
difficult to edit target cells. 

Although the current study was conducted in the context of CRISPR, the overarching 
findings have implications for firms and individuals thinking about when and how to adopt new 
tools for innovation.  Variations in the ex ante domain difficulty and solution novelty is not 
unique to CRISPR and research teams looking to be early adopters in tools like AI will have to 
weigh the complexity and influence of their goals when considering how best to attract and 
collaborate with external tool specialists.  In order to be first to innovate with a new tool, 
external specialists are not always necessary to acquire complementary tool know-how.  
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However, external tool specialists may be more likely to find successful matches with internal 
domain teams that focus on more complex problems with highly influential solutions. 

 The findings contribute to the literature on innovative teams and team structure by 
uniquely showing that not just features of management, organizational structure, or industry are 
important for effective team design.  Team composition is also driven by the specific nature of 
the problem to be solved and the nature of tools available for innovation.  This paper is one of 
the first in a series that uses CRISPR to answer key questions in innovation, management, and 
economics.  For example, future papers can build on the results established here to study the 
effect of breakthrough technologies on academic entrepreneurship, the impact of policies 
regarding genetically modified organisms on agricultural product development, the effect of 
unresolved intellectual property disputes on scientific innovation, and how to incentivize ethical 
innovation without stifling important technological advances.  
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9 Figures and Tables 
 
Figure 1. Addgene Plasmid and Kit Orders by Year 

 

Notes. This graph shows the number of individual plasmids and sets of plasmids (kits) that Addgene sold per 
year from its start in 2004 through 2015.  The blue bars are orders for non-CRISPR plasmids and the red bars 
are orders for CRISPR plasmids.  Source: Addgene internal records, 2004 – 2015. 
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Figure 2. Example Timeline of CRISPR Introduction and Applications 
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Figures 3a and b. CRISPR Entry by Year and Disease Cell Edit Difficulty  
 

 

Notes. Figure 3a shows the number of diseases that first receive CRISPR each year by whether the target cell can be edited ex vivo or not.  If the cell a 
disease targets cannot be edited ex vivo, then it will be harder and costlier (in resources) to edit.  The light blue bars are the number of diseases that 
receive CRISPR if their affected cells can be edited ex vivo.  The dark blue bars are the number of diseases that receive CRISPR if their affected cells 
cannot be edited ex vivo.  Figure 3b shows the number of diseases that first receive CRISPR each year by whether the cell can self-replicate or not.  If 
the cell a disease targets does not self-replicate, then it will be harder and costlier (in resources) to edit.  The light purple bars are the number of diseases 
that receive CRISPR if their target cells do self-replicate.  The dark purple bars are the number of diseases that receive CRISPR if their target cells 
cannot self-replicate. For both measures, CRISPR entry is delayed in the difficult to edit diseases.  Source: PubMed publications and MeSH Terms, 2013 
– 2016. 
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Figure 4. Distribution of the Share of External CRISPR Specialists by Disease-Quarter 
and Disease Cell Edit Difficulty (Ex Vivo Editing) 

 

  

Notes. This figure shows the distributions of the share of external CRISPR specialists on teams that publish 
CRISPR papers in easy and difficult diseases by disease and quarter.  The light blue bars represent the 
distribution pattern for easy diseases and the dark blue bars represent the distribution pattern for difficult 
diseases.  The distribution of the dark blue bars shifts to the right suggesting that teams publishing in difficult 
diseases have a higher share of external CRISPR specialists. The difficulty of the disease is measured by 
whether the targeted cell can be edited ex vivo.  If the cell a disease targets cannot be edited ex vivo, then it 
will be harder and costlier (in resources) to edit.  CRISPR-Disease papers are defined as articles containing 
MeSH Terms for both the disease domain and CRISPR. An author of a CRISPR paper in a disease is 
considered an external CRISPR specialist if he or she published in CRISPR first (and not in the disease).  
Source: PubMed publications and MeSH Terms, Q1 2013 – Q4 2016. 
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Figures 5a and b. Number of Authors on CRISPR-Disease Papers by Quarter and  
Disease Affected Cell Edit Difficulty (Ex Vivo Editing) 

 

Notes. Figure 4a shows the increase in the total number of authors on CRISPR-disease papers by disease difficulty and quarter.  Figure 5b shows the 
increase in only external CRISPR specialist authors on CRISPR-disease papers by disease difficulty and quarter.  In both figures, the light blue line 
represents the trend for easy diseases and the dark blue line represents the trend for difficult diseases.  The difficulty of the disease is measured by 
whether the targeted cell can be edited ex vivo.  If the cell a disease targets cannot be edited ex vivo, then it will be harder and costlier (in resources) to 
edit.  CRISPR-Disease papers are defined as articles containing MeSH Terms for both the disease domain and CRISPR.  An author of a CRISPR paper 
in a disease is considered an external CRISPR specialist if he or she published in CRISPR first (and not in the disease).  Source: PubMed publications 
and MeSH Terms, Q1 2013 – Q4 2016. 
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Figure 6. Mean Differences in the Share of External CRISPR Specialists by Disease 
Cell Edit Difficulty (Ex Vivo Editing) for First and Subsequent Innovations 

 

 
 
Notes. This figure shows the difference in means between the share of external CRISPR specialists for CRISPR 
papers in easy diseases versus difficult diseases based on whether the paper was the first or subsequent 
CRISPR paper in the disease.  The light blue bars represent the means for easy diseases and the dark blue 
bars represent the means for difficult diseases.  The share of external CRISPR specialists is higher on average 
for teams publishing CRISPR papers in difficult diseases for both the first and subsequent papers. The 
difficulty of the disease is measured by whether the targeted cell can be edited ex vivo.  If the cell a disease 
targets cannot be edited ex vivo, then it will be harder and costlier (in resources) to edit.  CRISPR-Disease 
papers are defined as articles containing MeSH Terms for both the disease domain and CRISPR.  An author of 
a CRISPR paper in a disease is considered an external CRISPR specialist if he or she published in CRISPR 
first (and not in the disease).  Source: PubMed publications and MeSH Terms, Q1 2013 – Q4 2016. 
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Figure 7. Additional Change in the Share of External CRISPR Specialists for 
Subsequent Innovations in Difficult to Edit Diseases (Ex Vivo Editing)  

 

 
Notes. This figure shows the change in the share of external CRISPR specialists on teams publishing 
subsequent CRISPR-disease papers in difficult diseases an corresponds to the coefficients estimated in Table 
4a, Model 2.  As later subsequent CRISPR papers are published in difficult diseases as compared to easy 
diseases, the share of external CRISPR specialists authors increases.  The difficulty of the disease is measured 
by whether the targeted cell can be edited ex vivo.  If the cell a disease targets cannot be edited ex vivo, then 
it will be harder and costlier (in resources) to edit.  CRISPR-Disease papers are defined as articles containing 
MeSH Terms for both the disease domain and CRISPR.  An author of a CRISPR paper in a disease is 
considered an external CRISPR specialist if he or she published in CRISPR first (and not in the disease).  
Source: PubMed publications and MeSH Terms, Q1 2013 – Q4 2016.
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Table 1. Summary Statistics 

 

Notes. Summary statistics by Disease-Quarter for CRISPR publications and authors in 228 Disease categories.  CRISPR-Disease papers are the 
underlying population of the dataset and are defined as articles containing MeSH Terms for both the disease domain and CRISPR.  Source: PubMed 
publications and MeSH Terms, Q1 2013 – Q4 2016. 

N Mean
Std. 
Dev.

Min Max N Mean
Std. 
Dev.

Min Max N Mean
Std. 
Dev.

Min Max

Share of External 
CRISPR Specialists

Share of authors with a CRISPR 
publication before a Disease or 
CRISPR-Disease publication

442 0.251 0.342 0 1 303 0.215 0.307 0 1 139 0.328 0.398 0 1

Total External 
CRISPR Specialists

Total authors with a CRISPR 
publication before a Disease or 
CRISPR-Disease publication

442 1.665 2.920 0 22 303 1.640 3.062 0 22 139 1.719 2.593 0 12

Total Authors
Total authors on a CRISPR-
Disease publication 442 6.830 7.186 1 60 303 7.541 7.900 1 60 139 5.281 4.993 1 41

Edit Difficulty 
(No Ex Vivo)

= 1 if disease affects cells that 
cannot be edited ex vivo ; = 0 
otherwise

442 0.314 0.465 0 1 303 0.000 0.000 0 0 139 1.000 0.000 1 1

Edit Difficulty 
(No Cell Rep)

= 1 if disease affects cells that do 
not self replicate;  = 0 otherwise 442 0.172 0.378 0 1 303 0.000 0.000 0 0 139 0.547 0.500 0 1

Quarter
Quarter of focal CRISPR-Disease 
paper 442 2015q4 3.187 2013q1 2016q4 303 2015q4 3.277 2013q1 2016q4 139 2016q1 2.809 2013q1 2016q4

Quarters from First 
Pub

Difference in quarters from the 
focal to the first CRISPR-Disease 
paper in a Disease

442 2.394 3.345 0 15 303 2.779 3.439 0 15 139 1.554 2.971 0 14

Max Quarters from 
First Pub

Difference in quarters from the 
most recent to the first CRISPR-
Disease paper in a Disease

442 4.541 4.272 0 15 303 5.304 4.231 0 15 139 2.878 3.885 0 14

Total Disease Pubs
Number of Disease papers 
published 442 506.380 662.740 2 2967 303 573.574 705.242 6 2967 139 359.907 532.585 2 2346

Total CRISPR-
Disease Papers

Number of CRISPR-Disease 
papers published 442 1.382 0.981 1 8 303 1.426 1.023 1 7 139 1.288 0.878 1 8

Variable Description
All Diseases Easy Diseases (No Ex Vivo   = 0) Difficult Diseases (No Ex Vivo   = 1)
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Table 2. Counts of Authors and Papers by  
Disease Cell Edit Difficulty (Ex Vivo Editing) and Year 

 

Total Number of CRISPR-Disease Authors by Edit Difficulty (No Ex Vivo) 

 

 

Total Number and % of External CRISPR Specialists by Edit Difficulty (No Ex Vivo) 

 

 

 

Total Number of CRISPR-Disease Papers by Edit Difficulty (No Ex Vivo) 

 

Notes. A CRISPR-Disease paper is defined as an article containing MeSH Terms for both the disease domain 
and CRISPR.  CRISPR-Disease authors are the authors on these publications.  External CRISPR Specialists 
are authors of CRISPR-Disease papers that published in CRISPR first.  Year is when a CRISPR-Disease 
paper was published.  Easy Diseases are those where the affected cell can be effectively edited ex vivo.  
Difficult Diseases are those where ex vivo editing is not available.  Source: PubMed publications and MeSH 
Terms, 2013 – 2016. 

2013 2014 2015 2016 Total
Easy Diseases 27 232 730 1296 2285
Difficult Diseases 10 22 141 561 734
Total 37 254 871 1857 3019

2013 2014 2015 2016 Total
Easy Diseases 2 35 124 336 497
Difficult Diseases 0 6 47 186 239
Total 2 41 171 522 736

2013 2014 2015 2016 Total
Easy Diseases 7.4% 15.1% 17.0% 25.9% 21.8%
Difficult Diseases 0.0% 27.3% 33.3% 33.2% 32.6%

2013 2014 2015 2016 Total
Easy Diseases 7 49 136 240 432
Difficult Diseases 4 7 30 138 179
Total 11 56 166 378 611
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Table 3. Disease Cell Edit Difficulty and Share of External CRISPR Specialists 

 (1) (2) (3) (4) (5) (6) 
 OLS OLS OLS GLM, Logit GLM, Logit GLM, Logit 

DV = Share Ext. 
CRISPR Spec. 

Share Ext. 
CRISPR Spec. 

Share Ext. 
CRISPR Spec. 

Share Ext. 
CRISPR Spec. 

Share Ext. 
CRISPR Spec. 

Share Ext. 
CRISPR Spec. 

Edit Difficulty 0.0754*  0.1538*** 0.3891*  0.7943*** 
(No Ex Vivo) (0.0400)  (0.0483) (0.2015)  (0.2198) 
       
Edit Difficulty  -0.0291 -0.1459**  -0.1662 -0.7483** 
(No Cell Rep)  (0.0506) (0.0640)  (0.2532) (0.3010) 
       
Tot Disease Pubs -0.0001*** -0.0001*** -0.0001*** -0.0007*** -0.0007*** -0.0007*** 
 (0.0000) (0.0000) (0.0000) (0.0002) (0.0002) (0.0002) 
       
Constant 0.0613 0.0931 0.0416 -15.2530*** -15.0626*** -15.4207*** 
 (0.0715) (0.0624) (0.0910) (0.6577) (0.7006) (0.6997) 
FE Quarter, Age Quarter, Age Quarter, Age Quarter, Age Quarter, Age Quarter, Age 
Observations 442 442 442 442 442 442 
Diseases 228 228 228 228 228 228 
R2 0.0853 0.0775 0.0991    
Log Likelihood -132.9693 -134.8536 -129.6273 -204.7815 -205.7884 -202.8224 

Standard errors in parentheses 
Based on authors of all CRISPR-Disease papers, errors clustered by disease 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 
 
Notes. This table shows the difference in the share of external CRISPR specialists on CRISPR-disease papers 
by the difficulty of disease target cell editing using both OLS and GLM with Logit Link models.  In diseases 
with cells that cannot be edited ex vivo, the share of external CRISPR specialist authors increases controlling 
for quarter, age, and disease attractiveness.  The effect is stronger when also controlling for the target cell’s 
ability to self-replicate.  The difficulty of cell editing by disease can be measured by biological factors of the 
cells each disease primarily targets.  Two key factors are (1) whether the cell can be edited ex vivo and (2) 
whether the cell can self-replicate.  If the cell a disease targets cannot be edited ex vivo or if the cell does not 
self-replicate, then it will be harder and costlier (in resources) to edit.  A CRISPR-disease paper is defined as 
an article containing MeSH Terms for both the disease domain and CRISPR.  An author of a CRISPR-disease 
paper has an external CRISPR background if he or she published in CRISPR first (and not in the disease).  
Source: PubMed publications and MeSH Terms, Q1 2013 – Q4 2016. 
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Table 4a. Share of External CRISPR Specialists in Subsequent Innovations by Disease 
Cell Edit Difficulty (Ex Vivo Editing) (Complete Dataset) 

 

 (1) (2) (3) (4) 
 OLS, FE OLS, FE GLM, Logit GLM, Logit 
DV = Share Ext. 

CRISPR Spec. 
Share Ext. 

CRISPR Spec. 
Share Ext. 

CRISPR Spec. 
Share Ext. 

CRISPR Spec. 
Edit Difficulty*  
Qtr. from First Pub 

0.0442***  0.3331***  
(0.0151)  (0.1292)  

     
Edit Difficulty* 
First Year (no first paper) 

 0.0294  0.0898 
 (0.1152)  (0.8116) 

     
Edit Difficulty* 
Second Year 

 0.1508  1.0440 
 (0.1708)  (0.9814) 

     
Edit Difficulty* 
Remaining Years 

 0.4737***  4.1928*** 
 (0.1562)  (1.3324) 

     
Tot Disease Pubs -0.0000 0.0000 -0.0009 -0.0003 
 (0.0001) (0.0001) (0.0008) (0.0009) 
     
Constant 0.2345 0.1490 -18.4380*** -17.9954*** 
 (0.1780) (0.1546) (1.0464) (1.0471) 

FE Quarter, Age, 
Disease 

Quarter, Age, 
Disease 

Age, Disease Age, Disease 

Observations 442 442 442 442 
Diseases 228 228 228 228 
R2 0.1015 0.0966   
Log Likelihood 104.1781 102.9659 -115.3090 -115.2413 

Standard errors in parentheses; Based on authors of all CRISPR-Disease papers, errors clustered by disease 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 
Notes. This table shows the difference in the share of external CRISPR specialists for subsequent CRISPR-
disease papers by disease difficulty using both OLS and GLM with Logit Link models.  As later subsequent 
CRISPR papers are published in difficult diseases as compared to easy diseases, the share of external CRISPR 
specialists authors increases controlling for disease, quarter, age, and disease attractiveness.  The difficulty of 
the disease is measured by whether the targeted cell can be edited ex vivo.  If the cell a disease targets cannot 
be edited ex vivo, then it will be harder and costlier (in resources) to edit.  CRISPR-Disease papers are defined 
as articles containing MeSH Terms for both the disease domain and CRISPR.  An author of a CRISPR paper 
in a disease is considered an external CRISPR specialist if he or she published in CRISPR first (and not in the 
disease).  Source: PubMed publications and MeSH Terms, Q1 2013 – Q4 2016. 
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Table 4b. Share of External CRISPR Specialists in Subsequent Innovations by Disease 
Cell Edit Difficulty (Ex Vivo Editing) (Diseases w/Many Papers) 

 
 (1) (2) (3) (4) 
 OLS, FE OLS, FE GLM, Logit GLM, Logit 

DV = Share Ext. 
CRISPR Spec. 

Share Ext. 
CRISPR Spec. 

Share Ext. 
CRISPR Spec. 

Share Ext. 
CRISPR Spec. 

Edit Difficulty*  
Qtr from First Pub 

0.0442***  0.3858**  
(0.0153)  (0.1763)  

     
Edit Difficulty* 
First Year (no first paper) 

 0.0294  0.3494 
 (0.1169)  (0.8458) 

     
Edit Difficulty* 
Second Year 

 0.1508  1.3501 
 (0.1732)  (1.1542) 

     
Edit Difficulty* 
Remaining Years 
 

 0.4737***  4.0363*** 
 (0.1585)  (1.4842) 

Tot Disease Pubs -0.0000 0.0000 -0.0001 -0.0000 
 (0.0001) (0.0001) (0.0012) (0.0012) 
     
Constant 0.1680 0.0895 -16.3330*** -17.4666*** 
 (0.1893) (0.1658) (2.8533) (2.9530) 

FE Quarter, Age, 
Disease 

Quarter, Age, 
Disease 

Quarter, Age, 
Disease 

Quarter, Age, 
Disease 

Observations 307 307 307 307 
Diseases 93 93 93 93 
R2 0.1015 0.0966   

Log Likelihood 16.4140 15.5721 -94.0049 -94.4182 
Standard errors in parentheses; Based on authors of all CRISPR-Disease papers for diseases with more than 
one paper, errors clustered by disease; * p < 0.10, ** p < 0.05, *** p < 0.01 
 
Notes. This table shows the difference in the share of external CRISPR specialists for subsequent CRISPR-
disease papers by disease difficulty using both OLS and GLM with Logit Link models but run only for diseases 
with multiple papers.  As later subsequent CRISPR papers are published in difficult diseases as compared to 
easy diseases, the share of external CRISPR specialists authors increases controlling for disease, quarter, age, 
and disease attractiveness.  The difficulty of the disease is measured by whether the targeted cell can be edited 
ex vivo.  CRISPR-Disease papers are defined as articles containing MeSH Terms for both the disease domain 
and CRISPR.  An author of a CRISPR paper in a disease is considered an external CRISPR specialist if he or 
she published in CRISPR first (and not in the disease).  Source: PubMed publications and MeSH Terms, Q1 
2013 – Q4 2016. 
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10 Appendix 

Figure A1. Quarter of Publication and Share of External CRISPR Specialists 
 

 
 

Notes. This figure shows the change in the share of external CRISPR specialists by quarter of publication.  
Each point is the estimated coefficient and standard errors from an OLS model that regresses each quarter of 
publication from Q1 2014 – Q4 2016 on the share of external CRISPR specialists publishing CRISPR-disease 
papers.  A CRISPR-disease paper is defined as an article containing MeSH Terms for both the disease domain 
and CRISPR.  An author of a CRISPR-disease paper has an external CRISPR background if he or she 
published in CRISPR first (and not in the disease).  Source: PubMed publications and MeSH Terms, Q1 2014 
– Q4 2016. 
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Table A1. Mean Differences in the Share of External CRISPR Specialists by Disease 
Cell Edit Difficulty (Ex Vivo Editing) for First and Subsequent Innovations 

 

Difference in Means by Time Period and the Availability of Ex Vivo Editing 

 
 
 
Notes. This table shows the difference in means between the share of external CRISPR specialists for CRISPR 
papers in easy diseases versus difficult diseases based on whether the paper was the first or subsequent 
CRISPR paper in the disease and is the raw data for Figure 6.  The share of external CRISPR specialists is 
higher on average for teams publishing CRISPR papers in difficult diseases for both the first and subsequent 
papers. The difficulty of the disease is measured by whether the targeted cell can be edited ex vivo.  If the cell 
a disease targets cannot be edited ex vivo, then it will be harder and costlier (in resources) to edit.  CRISPR-
Disease papers are defined as articles containing MeSH Terms for both the disease domain and CRISPR.  An 
author of a CRISPR paper in a disease is considered an external CRISPR specialist if he or she published in 
CRISPR first (and not in the disease).  Source: PubMed publications and MeSH Terms, Q1 2013 – Q4 2016. 

 

Share of External 
CRISPR Specialists

N 
(Ex 

Vivo )

N 
(No 

Ex Vivo )

Ex 
Vivo

No 
Ex Vivo

Diff P-val

First Paper Only 138 90 0.23 0.33 0.10 0.05
In First Year - No First Paper 50 23 0.24 0.32 0.08 0.36
In Second Year - No First Paper 36 5 0.22 0.39 0.17 0.43
Remaining Years - No First Paper 13 6 0.21 0.47 0.26 0.24


