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Abstract

To portray the market for technology, we create a dataset that tracks interactions in
the market for technology between publicly held companies in North America with at
least one patent. The dataset offers a broad coverage over time (1990-2013) and across
sectors, technologies and contractual forms of exchange (i.e. patent trades, licensing,
cross-licensing and R&D alliances). Using the dataset, we study firm matching in the
market for technology as a function of three metrics that have been widely documented
as important catalysts of technology adoption and knowledge spillovers: market, tech-
nological and geographical proximity. We predict that proximity (in any of these three
dimensions) will have a positive effect on the probability of a match in the market (but
not necessarily on adoption through infringement) based on a model of technology
transfer between a provider and an adopter. The three proximity metrics are found
to have a positive and significant effect on the probability of a match when exploiting
between adopter-provider variation. Only technological proximity remains positive and
significant when adopter-provider variation is exploited. The results have implications
that may be useful in characterizing results in the spillovers literature.
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1 Introduction

Most exchanges of abstract knowledge take place through bilateral bargaining (Gans &

Stern, 2010, Arora & Gambardella, 2010, Spulber, 2016). This implies that the market for

technology is essentially the web of bilateral interactions between the actors in the market. In

this paper, we portray the market for technology by creating a dataset that tracks interactions

between publicly held companies in North America with at least one patent in the USPTO

Patent Assignment Dataset. This dataset includes 22, 247 unique interactions between 4, 707

firms participating in the market for technology. While not a census, it compiles the most

comprehensive sample of interactions in the market for technology that can be put together

for public firms. Moreover, it offers a broad coverage over time (1990-2013) and across sectors,

technologies and contractual forms of exchange (i.e. patent trades, licensing, cross-licensing

and R&D alliances).

The constructed dataset is naturally well suited to study firm matching in the market

for technology. The market for technology has the potential to generate social gains by

enhancing allocative effi ciency and promoting the specialization of innovative labor (Arora

& Gambardella, 2010). However, this potential can only be materialized if the market for

technology is effi cient at matching each idea with the firm best fit to commercialize it (Gans

& Stern, 2010; Akcigit et al. , 2016). Studying matching is important to understand where

the market works and where it does not.

We study matching as a function of three distance metrics that have been widely doc-

umented as important catalysts of technology adoption and knowledge spillovers: market,

technological and geographical proximity (see Lychagin et al. , 2016; Hall et al. , 2010). If

the profits from knowledge adoption are increasing in such metrics so should the gains from

trade and the probability of a match in the market for technology. Understanding the precise

instances in which adoption takes place on and off the market is important to separate pure

externalities from transfers internalized by technology providers.

To analyze the impact of the proximity metrics (i.e. market, technological and geo-
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graphical proximity) on the probability of a match, a model of knowledge transfer between

a technology provider and a technology adopter is built. The technology provider owns a

patented technology that can be transferred to the adopter through negotiation of a patent

licensing agreement. Alternatively, the adopter can adopt the technology by infringing on

the provider’s patent. The profits from technology adoption are increasing in (market, tech-

nological or geographical) proximity. The main result is that the probability of a match is

unambiguously increasing in proximity because the gains from trade are also increasing in

proximity. On the other hand, the probability of adoption through infringement (arguably

the form of adoption conductive to pure knowledge spillovers) is not necessarily increasing

in proximity.

The dataset on interactions is first analyzed through a descriptive network analysis that

provides several interesting stylized facts. First, firms very strongly cluster by sector of

activity, technological field and geographical location. Second, the Pharma and the ICT

clusters dominate the market. Third, horizontal (between rivals) and vertical (between

non-rivals) structures of interaction coexist. Fourth, prominent adopters also tend to be

prominent providers of technology.

Next, a proper econometric analysis is carried out to tease out the individual effect of

market, technological and geographical proximity on the probability of a match. To this

end, the datastet on interactions is complemented with Compustat and USPTO Patent

Assigment data to define the distance metrics and a set of controls. Market, technological

and geographical proximity between firms are constructed as the Jaffe (1986) uncentered

correlation closeness measure using Compustat Segment sales, USPTO classes and USPTO

inventor counties respectively (similarly to Bloom et al. , 2013). Three different datasets are

used in the regressions. Dataset A, which collapses all the years to create a cross section

of adopter-provider pairings; Dataset B, which splits the sample into two periods to create

predetermined explanatory variables; and Dataset C, which has a longitudinal structure that

allows controlling for adopter-provider fixed effects.
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The main empirical results are as follows. First, all the proximity metrics are found to

positively affect the probability of a match when exploiting the between adopter-provider

variation in Datasets A to C. This is true for every contractual form of exchange ranging

from patent trades to R&D alliances. Within adopter-provider estimates on Dataset C are

less unanimous with technological and geographical proximity having a positive (negative)

effect on the probability of a match for non-alliance (within-alliance) interactions, and market

proximity being no longer significant. On top of that, the probability of a match is found

to be monotonically increasing in technological and geographical proximity for (almost)

every single form of exchange. A different pattern emerges for market proximity with the

probability of a match immediately raising above zero for any positive value, but remaining

fairly constant as proximity increases. Overall, the results for market proximity suggest a

tension between the rent creation and rent dissipation effects of market proximity (see Arora

& Fosfuri, 2003).

Related literature. Our paper relates to the vast literature on the market for technology

(Arora et al. , 2001; Arora & Gambardella, 2010, Spulber, 2013; Spulber, 2015; Spulber,

2016). An important branch of the literature focuses on the supply side of the market,

placing a great emphasis on the licensor’s dilemma between maximizing licensing revenues

and minimizing rent dissipation from increased competition (see Arora & Fosfuri, 2003;

Gambardella & Giarratana, 2013; Fosfuri, 2006; Gambardella et al. , 2007).1 We contribute

to this literature by pointing out that, besides triggering rent dissipation on the provider,

market proximity may also have a positive rent creation effect on the profits of the adopter.2

The overall effect of market proximity on the probability of a match is then the result of

these two countervailing forces. Our estimates indicate that market proximity either has a

1Arora & Fosfuri (2003) conclude that licensing to competitors is more likely if the downstream market
is more competitive because in such a case the licensee dissipates fewer rents. Fosfuri (2006) concludes that
licensing to competitors is also more likely if the market for technology is more competitive because if the
licensor does not grant the license himself someone else will.

2This assumption is in keeping with the spillovers literature (see Bernstein & Nadiri, 1988). Such rent
creation effect may be due to technologies being tailored to specific market needs or to the adopter’s better
understanding of the market.
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positive effect on the probability of a match or no effect at all, suggesting that rent creation

may dominate rent dissipation.

Some recent papers study the demand side of the market for technology (see Ceccagnoli

et al. , 2010; Ali & Cockburn, 2016). Such papers emphasize that idea complementarity is a

key determinant of demand for two reasons. First, it helps the buyer evaluate the technology

and eliminate uncertainty about its value (Cohen & Levinthal, 1989; Cassiman & Veugelers,

2002; Cassiman & Veugelers, 2006). Second, many ideas only have value when matched to

key complementary assets (Teece, 1986). We show that the probability of a match is indeed

increasing in technological proximity (a proxy for complementarity). This is in line with Ali

& Cockburn (2016) who find licensees to prefer patents that are technologically closer to

their portfolio.

Like us, a few recent papers study the two sides of the market. Figueroa & Serrano (2013)

study the patterns of patent trading flows of small and large firms, finding the patent fit with

the firms’respective portfolios to be an important determinant of patent sale and acquisition

decisions.3 Akcigit et al. (2016) document similar stylized facts for publicly traded firms

in North America. Drivas & Economidou (2015) and Drivas et al. (2016) find geographical

proximity to matter for patent trades. An important difference between these papers and

ours is that their matching is patent-to-firm or patent-to-patent while ours is firm-to-firm.

This allows us to actually study firm matching in the market for technology.

Our paper very closely relates to the literature on R&D spillovers. It is well known that

R&D externalities are prominent between firms in similar industries (Teece, 1986; Bernstein

& Nadiri, 1988), technological fields (Jaffe, 1986; Bloom et al. , 2013; Manresa, 2016) and

geographical areas (Bottazzi & Peri, 2003). Lychagin et al. (2016) jointly study the three

types of R&D spillovers. In this paper we show that interactions in the market for technology

are not orthogonal to industrial, technological and geographical proximity either. In other

words, higher externalities come with more internalization. That should be acknowledged

3Sold patents have a low fit with the portfolio of the buyer and a high fit with the portfolio of the seller.
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when calculating the wedge between the social and private rates of return to R&D. Arqué-

Castells & Spulber (2017) study R&D spillovers accounting for the existence of technology

markets.

The remaining of the paper is organized as follows. Section 2 presents the analytical

model. Section 3 presents the data. Section 4 presents a visual network analysis of the

market for technology. Section 5 discusses the econometric analysis. Section 6 presents the

econometric results. Section 7 provides a discussion on the implications of the results for the

regression based spillovers literature. Section 8 concludes.

2 The Basic Model

To examine the effects of technological, geographical and market proximity on the proba-

bility of a match in the market for technology, it is suffi cient to consider the interaction

between a technology provider and a technology adopter. The technology provider owns a

patented technology that can be transferred to the adopter through negotiation of a patent

licensing agreement.4 Alternatively, the adopter can adopt the technology by infringing on

the provider’s patent. This setting is suffi cient to represent interactions between multiple

technology providers and technology adopters.

Let t = t(x, θ) represent the incremental profit the adopter obtains from the technology

transfer where x is a shock that is specific to the provider-adopter pair, and θ represents

proximity between the provider and the adopter respectively. Proximity θ refers to either

technological, geographical, or market distance measures. Assume that the incremental

profit from technology transfer is continuously differentiable and increasing in the shock x

and proximity θ.5

4The model takes licensing as the contractual mechanism for technology transfer, but the analysis applies
to other forms of market exchange such as patent trades, cross-licensing and R&D alliances.

5In defining t(x, θ) we rely on evidence from the R&D spillovers literature which has consistently docu-
mented that technological, geographical and market proximity are important determinants of a firm’s abiality
to benefit from external knowledge (see Lychagin et al. , 2016).
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Technology adoption may trigger some rent dissipation on the provider. Let λ ∈ [0, 1) be

the intensity of rent dissipation and λt(x, θ) the total reduction in profit to the provider.6

The shock x is observed before the provider and the adopter make any technology transfer

decisions. Assume that the shock is distributed on the positive real line with cumulative

distribution F (x). Technology shocks are independent across provider-adopter pairs. The

probability of a successful match between a provider and an adopter will depend on the

realization of the shock. This will generate predictions about the effects of technological

proximity and market competiton on the probability of a match.

If there is no technology adoption, the profits of the provider and the adopter are given by

πP0 and π
A
0 respectively. If adoption takes place through a technology transfer, the provider

and the adopter incur licensing costs cP and cA respectively and their profits are given by

ΠP (x, θ) = πP0 − λt(x, θ)− cP , (1)

ΠA(x, θ) = πA0 + t(x, θ)− cA. (2)

Consider now the effects of patent infringement by the adopter. If the adopter infringes

on the provider’s patent suppose that, with probability p, the adopter must cease infringe-

ment and pay damages K to the provider. The probability p denotes the likelihood that

infringement will be detected and the patent will be found to be valid. Otherwise, the

adopter benefits from the infringement and the provider suffers harm with probability 1− p.

If the adopter infringes on the provider’s technology, the expected profits of the provider and

the adopter are then

ΠP
0 (x, θ) = (1− p)[πP0 − λt(x, θ)] + p[πP0 +K], (3)

6Technological and geographical proximity are likely to enter t(x, θ) only. On the other hand, market
proximity could enter both t(x, θ) and λ(θ) because higher market proximity may also trigger more rent
dissipation on the provider (see Arora & Fosfuri, 2003). The overall effect of market proximity would then
depend on the strength of the rent creation and rent dissipation effects. Here we just model the rent creation
effect but we shall keep in mind the rent dissipation effect in the discussion of the empirical results for market
proximity.
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ΠA
0 (x, θ) = (1− p)[πA0 + t(x, θ)] + p[πA0 −K]. (4)

The outcome of negotiation between the provider and the adopter depends on whether

the adopter’s outside option is to avoid the technology entirely or to infringe on the tech-

nology. The adopter’s outside option is infringement if and only if the expected profits from

infringement are greater than or equal to profits without technology adoption, ΠA
0 (x, θ) ≥ πA0 .

The critical value of the shock for which the adopter is indifferent between infringement and

non-adoption is given by a unique value x̃ = x̃(θ) that solves ΠA
0 (x̃, θ) = πA0 , so that

t(x̃, θ) =
p

1− pK. (5)

Because t(x, θ) is increasing in x, if x ≥ x̃(θ), the adopter prefers infringement to non-

adoption and conversely for x < x̃(θ).

The outside options for the provider and the adopter are defined as follows,

πj(x, θ) =

{
Πj
0(x, θ) if x ≥ x̃(θ),

πj0 if x < x̃(θ),
j = P,A.

This implies that the overall gains from technology licensing equal

G(x, θ) = ΠP
0 (x, θ) + ΠA

0 (x, θ)− πP (x, θ)− πA(x, θ). (6)

Patent licensing is feasible if and only if there are gains from technology licensing,

G(x, θ) ≥ 0. Define x∗ = x∗(θ) as the smallest critical value of the shock such that there are

gains from technology licensing, that is, G(x∗, θ) = 0.

Full information bargaining will generate a Pareto effi cient outcome. This holds whether

bargaining is cooperative or non-cooperative.7 So, if there are gains from technology li-

censing, the provider and the adopter negotiate royalties R to divide total surplus. With

bargaining over patent licensing royalties, we can characterize the effects of the technology

7For axiomatic bargaining see for example Nash (1953). For non-cooperative bargaining see for example
Rubinstein (1982).
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shock on the outcome.

Proposition 1. If x∗ ≤ x̃, there are two regions, with licensing occurring if x∗ ≤ x < ∞

and no technology adoption if 0 ≤ x < x∗. If x∗ > x̃, there are three regions, with licensing

occurring if x∗ ≤ x <∞, infringement occurring if x̃ ≤ x < x∗, and no technology adoption

if 0 ≤ x < x̃.

The intuition for this result is as follows. If x∗ ≤ x̃, the outside options for the two

parties are those with no technology transfer for x∗ ≤ x ≤ x̃ and the outside options for the

two parties are those with infringement for x̃ ≤ x. In either situation, licensing generates

gains from trade and the parties negotiate a licensing agreement for x ≥ x∗. If x∗ > x̃, the

outside options for the two parties are those with infringement for all x ≥ x∗ and the parties

negotiate a licensing agreement for x ≥ x∗.

A match occurs when the parties negotiate a licensing agreement so that the probability

of a match is given by

Pr(match) = 1− F (x∗(θ)). (7)

We are interested in understanding how this probability varies with respect to θ. The proofs

of the next two results are in the Appendix.

Proposition 2. The probability of a match is increasing in proximity θ.

Proposition 2 is empirically testable. In the next sections we describe the dataset and

empirical strategy used to test if the probability of a match in the market for technology is

increasing in proximity.

Proposition 1 implies that there is adoption if x ≥ min{x̃(θ), x∗(θ)}. Adoption takes

place through infringement if x̃ ≤ x < x∗ or through licensing if x∗ ≤ x. This implies that

the probability of adoption is given by

Pr(adoption) = 1− F (min{x̃(θ), x∗(θ)}). (8)
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Because adoption can occur through either licensing or infringement, we obtain the fol-

lowing result.

Proposition 3. The probability of technology adoption is increasing in technological prox-

imity θ.

The probability of infringement (i.e. spillovers) is given by

Pr(infringement) = max{0, F (x∗(θ))− F (x̃(θ))}. (9)

If x∗(θ) < x̃(θ) or proximity is within the range where x∗(θ) = x̃(θ), infringement does not

occur so that small changes in proximity do not affect the probability of infringement. If

x∗(θ) > x̃(θ), infringement can occur but the effects of changes in proximity on the likelihood

of infringement are indeterminate.8

3 Data

We create a firm pairing dataset that tracks interactions in the market for technology between

publicly held companies in North America with at least one patent. The centerpiece of the

dataset is a newly created database on interactions in the market for technology. This

database on interactions is complemented with firm level information from Compustat and

patent data from the USPTO Patent Assignment Dataset (USPTO PAD, see Marco et al.

, 2015).9 In what follows we first describe the main components of our dataset as well as

the match between each one of them. Next we describe the data and variables used in the

regressions.

8The effects of proximity on the likelihood of infringement equal ∂Pr(infringement)∂θ = f(x̃(θ)) tθ(x̃(θ),θ)tx(x̃(θ),θ)
−

f(x∗(θ)) tθ(x
∗(θ),θ)

tx(x∗(θ),θ)
.

9The match between Compustat and the USPTO Patent Assignment Dataset, which required a substantial
amount of work, is described in great detail in the companion document “Matching assignees and assignors
in the USPTO Patent Assignment Dataset to Compustat firms”.
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3.1 Dataset construction

Interactions in the market for technology. We follow Arora & Gambardella (2010)

in defining the market for technology broadly as explicit transactions involving a formal

exchange of knowledge for money or additional knowledge. We consider four major forms

of technology exchange: patent trades, licensing, cross-licensing, and R&D alliances. The

first two involve exchanges of knowledge for money while the last two involve exchanges of

knowledge and perhaps also balancing payments. Patent trades, licensing, and cross-licensing

involve an exchange of existing technologies while R&D alliances involve an exchange of

future technologies (this might also be the case of ex-ante licensing agreements). Licensing

and cross-licensing may be embedded in technological alliances of some sort.

Our main goal is to collect a list of interactions in the market for technology with broad

coverage over time and across forms of exchange, sectors and technologies.10 It is well

understood that the market for technology is inherently opaque due to the enterprises’desire

to keep their business strategies secret. To construct our database, we rely on voluntarily

recorded patent assignments at the USPTO and compulsory disclosures to the SEC.11 This

implies that our data is a selected subset of the whole population of technology exchanges.

It is unclear how severely affected by selection patent assignment records at the USPTO

are. However, it is clear that SEC disclosures by definition offer a broader coverage of

economically significant deals in which at least one the parties in the agreement (and often

all of them) are publicly traded firms.12 In what follows, we describe the construction of the

datasets on each one of the different forms of technology transfer.

- Patent trades: We construct the dataset on patent trades between firms from the USPTO
10This implies that we intentionally discard well known databases specializing on specific sectors (mostly

Pharma and Biotech) such as Thomson Reuter’s Recap.
11SEC filings might also include voluntary disclosures. Our database may also include disclosures to

analogous regulatory agencies from outside the US.
12Public companies are required to disclose “material”transactions in their filings. A “material”event is

any significant event that affects the company’s financial standing, such as a lawsuit, merger, employment of
key personnel, joint venture, or license agreement. Public companies can be exempt from filing the standard
SEC forms if they have fewer than 500 stockholders and less than $10 million in total assets.
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PAD. This dataset provides detailed information on the changes in patent ownership.13

Following Marco et al. (2015) and Serrano (2010) we define a transaction as an inter-

firm patent trade if it is the second or subsequent transaction record for the patent, the

conveyance text identifies the transaction as an “assignment of the assignor’s interest”

and neither the assignor nor the assignee are individuals according to the USPTO

assignee identifiers.14 This definition yields 295,068 assignments involving 797,211

patents (some of which are reassigned more than once) and 149,752 firms (after name

harmonization and disambiguation).

- Licensing: We rely on ktMINE’s Licensing Database and Thomson Reuters’Joint Venture

& Strategic Alliances Database to obtain information on licensing.15 Both of these

databases apply publicly disclosed information (e.g. SEC filings). The main difference

between the two datasets is that ktMINE collects all types of licensing deals while

Thomson Reuters restricts attention to licensing within strategic alliances. These are

the main characteristics of the two datasets:

• ktMINE’s Licensing Database includes over 12,000 licensing deals mostly ex-

tracted from SEC filings with filing dates on or after 1990. For each deal, we

have detailed information on the identity of the licensor(s) and the licensee(s).

We cleaned and harmonized licensor and licensee names obtaining 12,304 unique

names.

• Thomson Reuters Joint Venture & Strategic Alliances Database includes 14,270
13We work with a version of the USPTO PAD that covers 5,534,135 transactions recorded at the USPTO

between January 1970 and January 2013 (inclusive). While the first transaction date is January 1970,
the number of transactions recorded in the initial years is negligible. Data coverage seems suffi cient
for the years 1981-2012. Updated versions of the USPTO Patent Assignment Dataset can be found at:
http://www.uspto.gov/learning-and-resources/electronic-data-products/patent-assignment-dataset.
14USPTO Assignee identifiers can be found in the PN_ASG_UPRD_69_13.TXT file of the PTMT

Custom Extract 2013.
15Thomson Reuters’Joint Venture & Strategic Alliances Database was accessed through SDC Platinum.

It tracks cooperative agreements by two or more separate entities that may (e.g. a joint venture) or may not
(e.g. agreements involving licensing, research and development, cross technology transfer, etc.) result in the
formation of a third entity. SDC offers a comprehensive coverage on the formation of all kinds of alliances
by companies all over the world from 1988 on (earlier deals are covered on a much less comprehensive basis).
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alliances with a licensing agreement flag. The identities of the parties in the

licensing agreement are disclosed, but who the licensor(s) and the licensee(s) are

is not specified. We carefully read a short memo available for each deal to find

out who is who. Name cleaning and harmonization yielded 12,976 unique names.

- Cross-licensing: We rely on two datasets. The first one is a dataset that we have created on

cross-licensing deals from disclosures to the SEC. The second one is a dataset on cross-

technology transfer deals between firms in strategic alliances covered in the Thomson

Reuters’Joint Venture & Strategic Alliances Database. Next we describe each one of

these datasets.

• The new database on cross-licensing deals was constructed as follows. First, we

carried out an exhaustive search across all the SEC forms (about 22,500 forms)

filed between 2000 and 2014 (both inclusive) containing the word “cross-licensing”

(or related strings). We extracted information on the 4,375 instances in which

the identity of the parties in the agreement was disclosed. Second, we searched in

Google for cross-licensing deals by Compustat firms with a prominent patenting

or R&D activity.16 This second search resulted in 599 deals with the names of

at least two cross-licensees. We appended the SEC and Google searches together

and harmonized the names of the cross-licensees finding 2,608 unique names.

• Thomson Reuters Joint Venture & Strategic Alliances Database includes 8,434

alliances with a cross-technology transfer agreement flag. As opposed to the cross-

licensing deals compiled in the self-created dataset, these are transfers exclusively

between firms collaborating in an alliance. We learnt from the short deal descrip-

tions that the term “cross-technology transfer”not only refers to cross-licensing.

Some deals involve research agreements or other unspecified forms of technology

16We define firms with a prominent patenting activity as firms with an average patent stock of more than
20 patents (according to the NBER-PDP match) and firms with a prominent R&D activity as firms that are
not matched to patents but have average yearly R&D expenditures equal or greater than $3 million.
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transfer. What remains clear is that whichever the exact technology transfer for-

mula is it always involves bilateral exchanges of technology. Name cleaning and

harmonization yielded 9,397 unique names.

- R&D alliances: We downloaded 16,160 alliances with an R&D agreement flag from Thom-

son Reuters Joint Venture & Strategic Alliances Database. R&D agreements involve

the further development of a technology or its realization from scratch. What is ex-

changed in this case is future knowledge the creation of which would not be possible

without the inputs or economic contribution by the partner. We cleaned and harmo-

nized the names of the firms forming the joint venture obtaining 13,576 unique names.

It is important to understand some important features about the collected list of interac-

tions. First, with most of the deals coming from SEC filings coverage is inevitably better for

publicly traded firms.17 Second, despite our efforts to amass the broadest possible amount

of deals our data is far from being a census even for public firms.18 That said, we believe

that it is the most comprehensive dataset on interactions in the market for technology that

can be put together for public firms. Finally, time coverage is acceptable for the post-1990

period.19

Compustat. Information in the Compustat Segment Dataset is used to define the product

market of each firm. Additionally, several balance sheet items in Compustat North America

Fundamentals (Annual) are used to control for firm specific attributes that might affect the

probability of a match.

17Private firms do also show in deals disclosed to the SEC, but to a lesser extent. The filers of SEC filings
are public firms. One of the parties of the deal is the filer itself (or a subsidiary). The other party can either
be another public firm or a private one. So SEC deals are public to public or public to private.
18There are “non-material” deals not disclosed to the SEC or even “material” deals that are disclosed

with redacted terms. For instance, LEXMARK INTERNATIONAL INC states in some of its SEC filings
that it has in excess of one hundred patent cross-license agreements of which we were only able to find
four. Similarly, STANDARD MICROSYSTEMS CORP states in its filings that it has patent cross-licensing
agreements with more than thirty companies of which we found eight.
19This is necessarily the case for the licensing, cross-licensing and R&D alliances datasets which are

exhaustive for the post-1990 period. The USPTO PAD covers the post-1980 period but reassignments
remain relatively low until the mid-nineties (see Marco et al., 2015).
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USPTO Patent Assignment Dataset (USPTO PAD). The USPTO PAD is used

for three different purposes. The first one is to complement the dataset on interactions in

the market for technology by tracking patent trades between firms. The second one is to

measure the number of eventually granted utility patent applications per firm and year.20

Such patent flow is constructed as the yearly number of original employer assignments of

granted (by 2013) utility patents with application date on or after 1980.21 The third one is to

measure technological proximity between firms from the technology classes of their patents.

To accomplish that we import technology classes from the BASIC_13 file in the USPTO

PTMT Custom Extract 2013. The match between the USPTO PAD and Compustat is

explained in detail in the companion document “Matching assignees and assignors in the

USPTO Patent Assignment Dataset to Compustat firms”.

Match between datasets. Firms in the dataset on interactions in the market for technol-

ogy are linked to Compustat firms and USPTO PAD assignors/ees. In order to do that, we

first produce the ASSIGNEE/OR-GVKEY file which links standardized and disambiguated

assignor/ee names to Compustat GVKEYS.22 Because the dataset on patent trades is con-

structed from the USPTO PAD, the ASSIGNEE/OR-GVKEY link already matches firms

involved in patent assignments or reassignments to Compustat. The firms in the Licensing,

Cross-licensing and R&D alliance datasets are matched to the ASSIGNEE/OR-GVKEY file

20The USPTO PAD is extensively described in Marco et al. (2015). We work with a version that covers
5,534,135 transactions recorded at the USPTO between January 1970 and January 2013 (inclusive). While
the first transaction date is January 1970, the number of transactions recorded in the initial years is negligible.
Data coverage seems suffi cient for the years 1981-2012. Updated versions of the USPTO Patent Assignment
Dataset can be found at: http://www.uspto.gov/learning-and-resources/electronic-data-products/patent-
assignment-dataset.
21A transaction is defined as an employer assignment if it is the first transaction recorded for the patent,

the execution date is prior to or on the grant date and the conveyance text identifies the transaction as an
“assignment of the assignor’s interest”. This definition is consistent with the one proposed in Marco et al.
(2015). Overall, 3,031,098 utility patents are originally assigned from inventors to corporations.
22The matching protocol, described in great detail in an independent file titled “Matching assignees and

assignors in the USPTO Patent Assignment Dataset to Compustat firms”, does the following: 1) standardizes
and disambiguates assignor and assignee names in the USPTO Patent Assignment Dataset; 2) creates a
dynamic corporate ownership tree with information from Compustat, SDC Platinum and Osiris; 3) matches
the standardized and disambiguated assignee and assignor names to standardized firm names in the dynamic
ownership tree and in the DYNASS file of the NBER Patent Data Project (see Hall et al. , 2001).
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by name. Details on the match are provided in Appendix B.

Short description of the matched data. The final dataset includes 22, 247 unique

pairings matched to Compustat and the USPTO PAD. Most of the pairings interact through

only one exchange mode, but up to 5, 228 pairings interact through two or more forms of

exchange. The dataset includes 4, 707 unique firms (4, 029 adopters and 3, 833 providers

with 3, 155 firms doing both). The number of interactions per firm is highly skewed with

most of the firms adopting from and/or providing to fewer than five firms. However, some

firms have a remarkable number of interactions. The top-35 list of adopters and providers is

provided in Table 1.

Execution dates are available for 22, 114 pairings. Some pairings have multiple transac-

tion records, with the average number of records per pairing being 7.9 and the total number

of pairing-record observations 173, 586. For patent trades, the number of transaction records

is equivalent to the number of unique deals between firms. However, for the remaining

modes of exchange the number of records generally exceeds the number of unique deals be-

cause some deals are collected multiple times through different SEC filings.23 This implies

that the dataset is better suited to capture the extensive margin (i.e. whether two firms ever

interact) than the intensive margin (i.e. the number of interactions between firms).

Figure 1 shows the distribution of the number of pairings by execution year for every

contractual mode of exchange. The number of interactions is almost negligible for the pre-

1990 and post-2013 years. It is important to understand that part of the variation in the

number of interactions over time is driven by sampling choices. For patent trades, sampling

is stable over the whole period; for non-alliance related licensing and cross-licensing deals,

23Disambiguation of unique transactions is complex because the only information available for some deals
is the name of the parties and the execution year. Admittedly, multiple entries between the same firms in
a given execution year are likely to refer to the same deal (even though they could also be different deals).
A very crude form of disambiguation is to keep just one pairing by execution year (even if the pairing
exchanges technologies through different exchange modes). That results in 30, 753 unique pairing-execution
year observations. This number is substantially lower than the total number of records and not much higher
than the total number of interactions.
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sampling is relatively stable for the post-1995 period;24 for within-alliance deals, sampling

seems targeted around 1995.25

3.2 Samples and variables used in the econometric regressions

3.2.1 Samples

In order to study the determinants of firm matching in the market for technology in a

regression framework we create three datasets with bilateral interactions between firms.

Dataset A. This dataset includes interactions between every one of the firms in the dataset

on interactions with non-missing information on the variables used in the regressions (which

are described below). This includes 3, 605 firms and 3, 605·(3, 605−1) = 12, 992, 420 pairings.

All the years are collapsed with the dataset resulting in a cross-section of adopter-provider

pairings ij (i being the adopter and j the provider). The dependent variables are a series of

dummy variables with value one if the ij pairing ever interacts in the market for technology

(several dummy variables are created, one for every contractual mode of exchange). The

explanatory variables are defined as means over all the available years. More details on the

construction of the variables are provided below.

Dataset B. This dataset exploits the temporal dimension of the data on interactions to

define predetermined explanatory variables. The dependent variables are defined as dummy

variables with value one if the pairing interacts at least once in the market for technology

during the post-2000 (including 2000) period. The explanatory variables are defined as

means over the pre-2000 (excluding 2000) period. Only firms which interact in the market

for technology in the post-2000 period and with pre-2000 information on the explanatory

24Independent licensing and cross-licensing deals are sampled from SEC forms filed on or after 2000. SEC
filings essentially provide information on active deals. Many licensing and cross-licensing deals have terms
of +5 years so post-2000 filings provide a substantial amount of information for the 1995-2000 period too.
25The sampling criteron used by SDC platinum to create the data on alliance-related deals (i.e. licensing

and cross-licensing deals and R&D alliances) is not explicit, so time consistency cannot be assumed. The
histograms suggest an uneven coverage with a peak around 1995 and a sharp decay after 2000.
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variables are preserved. This includes 1, 814 firms and 1, 814 · (1, 814 − 1) = 3, 288, 782

pairings. Notice that this dataset is still a cross-section of ij pairings, even if it exploits the

time dimension to construct pre-determined variables.

Dataset C. This dataset is a longitudinal panel of time dimension T = 3 with the time unit

t being five year periods starting in 1995− 2000 and ending in 2005− 2010. The dependent

variables are defined as dummy variables with value one if the firm pairing interacts at

least once in the market for technology during the corresponding five-year period. The

explanatory variables are defined as means over the corresponding five-year period.26 We

preserve a balanced panel with all the observations with non-missing information on all the

variables all the panel periods. This includes 799 firms, 799 · (799 − 1) = 637, 602 pairings

and 3 · 637, 602 = 1, 912, 806 observations.

3.2.2 Variables

The variables used in the regressions are defined below. Their descriptive statistics are

provided in Table 2 for each one of the datasets described above.

Match. Seven dependent variables are defined. The first one is a dummy variable with

value one if firm i adopts knowledge from firm j at least once in any of the different contrac-

tual forms of exchange and value zero otherwise. The remaining six are analogous dummy

variables specific to every mode of exchange (i.e. patent trades, licensing outside alliances,

licensing within alliances, cross-licensing outside alliances, cross-licensing within alliances

and R&D alliances).

Market proximity. Following Bloom et al. (2013), we use the Compustat Segment

Dataset on each firm’s sales, broken down into four digit industry codes, to calculate market
26The econometric specification applied on Dataset C lags the explanatory variables by one (five-year)

period. Therefore, the explanatory variables are constructed with data for the panel periods 1990 − 1995,
1995 − 2000 and 2000 − 2005. So, overall, four five-year intervals are used to define the dependent and
explanatory variables even if the time dimension of the panel is T = 3.
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proximity. We define the vector Si = (Si1, Si2,..., Si1100) where Sik is the share of sales of

firm i in the four digit industry k, which runs from 1 to 1100 (the number of SIC4 codes

across which we observe the distribution of sales). The Jaffe (1986) product market close-

ness measure is calculated as the uncentered correlation between the respective sales vectors

of the two firms: SICij = (SiS
′
j)[(SiS

′
i)
1/2(SjS

′
j)
1/2]−1 × 100. This index ranges between

zero (minimum closeness) and one hundred (maximum closeness) depending on the degree

of overlap in market proximity between firm pairings.

Technological proximity. We use the average share of patents per firm in each technology

class as our measure of technological activity. We define the vector Ti = (Ti1, Ti2,..., Ti420)

where Tiτ is the share of patents of firm i in technology class τ , which runs from 1 to 420

(the number of USPTO technology classes covered by the patents in our sample). The Jaffe

(1986) technology closeness measure is calculated as the uncentered correlation between the

respective technology vectors of the two firms: TECij = (TiT
′
j)[(TiT

′
i )
1/2(TjT

′
j)
1/2]−1 × 100.

This index ranges between zero (minimum closeness) and one hundred (maximum closeness)

depending on the degree of overlap in technology between firm pairings.

Geographical proximity. We use the geographical location (i.e. U.S. counties or for-

eign country) of all the inventors on every patent to pinpoint the geographical distrib-

ution of a firm’s research. For each firm we define the vector Gi = (Gi1, Gi2,..., Gi2412)

where Giτ is the share of inventors of firm i in location g, which runs from 1 to 2, 412

(reflecting 2, 412 U.S. counties and 149 foreign countries across which we observe the dis-

tribution of patents). Geographical closeness between firms is calculated as GEOij =

(GiG
′
j)[(GiG

′
i)
1/2(GjG

′
j)
1/2]−1×100. Again, this index ranges between zero (minimum close-

ness) and one hundred (maximum closeness) depending on the degree of overlap in geograph-

ical proximity between firm pairings.
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Controls. We define a series of firm specific variables to control for adopter and provider

specific attributes. Such firm-specific controls are the natural log of (one plus) average yearly

R&D expenditures, the natural log of (one plus) the average number of eventually granted

yearly patent applications and the natural log of (one plus) the average number of workers.

Averages are taken over all the available Compustat years for Dataset A, for pre-2000 years

for Dataset B and for the corresponding five-year period for Dataset C. We also use as firm-

specific controls a full set of industry (at the SIC2 level), technology class (at the NBER36

level) and geographical location (at the U.S. state level) dummy variables plus a variable that

counts the number of years during which the pairing overlaps in Compustat. Additionally,

for Dataset B we define a dummy variable with value one if the pair interacts in the market

for technology in the pre-2000 period to control for adopter-provider fixed effects.

4 Visual network analysis

In this section we describe the dataset on interactions in the market for technology through

a network analysis. We provide a visual portray of the market for technology which emerges

from the linkage and aggregation of multiple bilateral interactions. We search for common

patterns of interaction between firms and analyze if firms cluster by sectors of activity,

technological fields and geographical locations. The network analysis is performed on a

subsample of 19, 578 unique pairings between 3, 753 firms with non-missing information

on SIC2 codes (from Compustat), technological classes (from USPTO PAD patents) and

inventor geographical location (also from USPTO PAD patents). This dataset collapses all

the years so it essentially captures the extensive margin of the market for technology (i.e.

whether two firms ever interact) during the period 1990-2013.27

Figure 2 describes the network of interactions in the market for technology. Each node

27Some interactions take place earlier than 1980 (mostly for patent trades) and later than 2013 (some
alliance-related deals from SDC Platinum). However, as Figure 1 makes clear, the bulk of interactions takes
place between 1990 and 2013. The intensive margin (how many times two firms interact) is disregarded in
the collapsed dataset.
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represents a firm (with node size being proportional to the number of interactions of the firm)

and each edge represents an interaction between two firms. Nodes are arranged following

the Fruchterman & Reingold (1991) algorithm. Firms that appear closer to each other in

the graph are more strongly connected. Notice that edges only provide information on the

extensive margin (whether two firms interact or not) but not on the intensive margin (how

many times they interact). Therefore, “strongly connected”means not that two firms interact

more often with each other but rather that they tend to interact with the same firms. The

names of the top-10 participants in the market for technology (counting both provisions and

adoptions) are reported on the corresponding nodes. The network of interactions is colored

by sector of activity (two digit SIC codes in Panel A), main technological field (NBER PDP

36 group aggregation, see Hall et al. , 2001, in Panel B) and US State (Panel C).

Two big clusters coexist in the market for technology: the Pharma and the ICT clusters,

on the left and right sides of Figure 2 respectively. Such clusters are well delineated by

specific sectors of activity, technological fields and geographical locations. Some firms in the

transportation industry bridge the two big clusters. Interestingly, the Pharma and the ICT

clusters have remarkably different structures.

The Pharma cluster is composed by a very strong core supplemented by a periphery. The

central position in the Pharma cluster is filled with firms in the sector of activity SIC2-28

(Chemicals and allied products) and the technology class NBER-31 (Drugs). The periphery

is filled with firms in the sector of activity SIC2-38 (Measuring, analyzing and controlling

instruments; Photographic, medical and optical goods; Watches and clocks) and the tech-

nology classes NBER-32 (Surgery and medical instruments), NBER-33 (Biotechnology) and

NBER-19 (Miscellaneous-chemical). Geographically wise, firms in the Pharma cluster are

scattered over multiple US states without revealing a strong location pattern.

By constrast, the ICT cluster is composed of equally prominent sectors and technologies.

By sector of activity, the ICT cluster comprises firms in SIC2-35 (Industrial and commercial

machinery and computer equipment), SIC2-36 (Electronic and other electrical equipment
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and components, except computers) and SIC2-73 (Business Services) with all three sectors

sharing an equally important role. By technological area, the ICT cluster includes NBER-

22 (Computer hardware and software) and NBER-21 (Communications). Geographically

wise, most of the firms in the ICT cluster are located in California. The firms that bridge

the two big clusters belong mostly to SIC2-37 (Transportation Equipment) and NBER-19

(Miscellaneous-chemical).

Figure 3 provides interaction matrices describing the structure of interactions by sector

of activity (Panel A), technology areas (Panel B) and US States (Panel C). Interaction

matrices are helpful to intuitively understand the direction of knowledge flows between units,

which is diffi cult to grasp from the interactions network. Each cell represents an interaction

between two units with adopters being displayed in the y-axis and providers in the x-axis.

Cell color intensity is increasing in the percentage of firm interactions taking place within

each cell out of the total number of interactions. Three common patterns emerge from the

interaction matrices. First, the diagonal sticks out meaning that within unit interactions are

frequent. Second, certain rows and columns are colored all the way meaning that there are

some prominent adopters and providers which adopt from and provide to a wide arrange of

units. Therefore, not only within but also between unit exchanges are frequent with specific

units being responsible for such cross-unit transfers. Finally, the most intensely colored rows

correspond to units that also have intensely colored columns, meaning that frequent adopters

also are frequent providers. This is not surprising given that certain forms of exchange such

as cross-licensing and R&D alliances are bidirectional.

Beyond these common patterns, the interaction matrices reveal certain patterns by sector,

technology and geography. Panel A reveals that some sectors of activity are responsible for

most of the exchanges. These are the same salient sectors in the interactions network: SIC2-

28 (Chemicals and allied products), SIC2-35 (Industrial and commercial machinery and

computer equipment), SIC2-36 (Electronic and other electrical equipment and components,

except computers), SIC2-37 (Transportation Equipment), SIC2-38 (Measuring, analyzing
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and controlling instruments; Photographic, medical and optical goods; Watches and clocks),

SIC2-48 (Communications) and SIC2-73 (Business Services). Panel B reveals that the most

prominent technology classes in the market for technology are also the ones with presence in

the interactions network: NBER-19 (Miscellaneous-chemical), NBER-21 (Communications),

NBER-22 (Computer hardware and software), NBER-31 (Drugs), NBER-32 (Surgery and

medical instruments), NBER-33 (Biotechnology), NBER-45 (Power Systems) and NBER-46

(Semiconductor Devices). Finally, Panel C reveals that most of the firms interacting in the

market for technologies are located in the expected states with big cities also with presence

in the interactions network: California, Illinois, Massachusetts, New Jersey, New York and

Texas.

It is interesting to compare Panels A and B in Figure 3 to similar figures in related

papers that track knowledge flows through estimated interactions or patent citations. For

instance, Panel A is comparable to Figure 1 in Manresa (2016), which summarizes firm-

to-firm R&D spillovers estimated as parameters in a production function framework using

the NBER-Compustat match in Bloom et al. (2013). The main providers of spillovers in

Manresa (2016) are found to be SIC2-28, SIC2-36 and SIC2-48, which also happen to be some

of the most salient provider industries in the market for technology in our analysis. This

correspondence suggests that at least some of the spillovers documented by the regression-

based spillover literature are internalized through prices. Panel B is analogous to Figure 1

in Acemoglu et al. (2016), an interaction matrix of cross-class citations between USPTO

patents. The diagonal of the interaction matrix in Acemoglu et al. (2016) is much strongly

colored than the rest, suggesting that patent citations take place mainly within technology

field (defined as the NBER PDP 36 group aggregation, see Hall et al. , 2001). That stands in

contrast with Panel B in Figure 3 where some columns and rows are at least as salient as the

diagonal. It seems that knowledge diffusion might be more transversal between innovators

(corporations) than between inventors.
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5 Econometric analysis

The descriptive analysis shows that market, technological and geographical proximity help

to explain the network of interactions in the market for technology. However, this positive

association could be partly or entirely due to counfounding factors. We are particularly

concerned about the following four identification problems. First, the three proximity metrics

are likely to be correlated with each other because firms in the same industries use specific

technologies and cluster in certain geographical locations. Simultaneously accounting for

them all is necessary to ascertain their individual contribution to the probability of a match.

Second, simultaneity is not properly addressed in the visual analysis which relies on

collapsed data that ignores the timing of the interactions. Collapsed data do not allow to

tell whether firms interact because they are close or they are close because they interact. For

instance, a firm may enter the market of the licensor upon having licensed its technology. We

are interested in establishing direction from proximity in the respective metrics to interaction

in the market for technology.

Third, firms are likely to have certain characteristics that make them more or less prone

to participate in the market for technology (e.g. different patenting propensities). Such firm

specific attributes need to be controlled for. Fourth, adopter-provider pairings are potentially

affected by common shocks which may prompt them to both co-locate in similar spaces and

interact more in the market for technology. This is indeed the reflection problem discussed

in Manski (1993) which constitutes the central identification challenge in the R&D spillovers

literature (see Bloom et al. , 2013). It is important to empirically distinguish proximity from

technological shocks.

In practice, we face a trade-off between preserving the maximum number of observations

and providing satisfactory solutions to the identification challenges discussed above. We

propose the following three econometric specifications applied on each one of the datasets

A to C described above which gradually move from preserving the maximum number of

observations at the expense of offereing poorer identification to improving identification at
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the expense of giving up on an important number of observations.

Specification 1 - Collapsed matching and distance metrics, Dataset A. The fol-

lowing econometric specification provides a starting point to tease out the effects of each one

of the distance metrics on the probability of a match,

mij = β1SICij + β2TECij + β3GEOij + β4Xi + β5Xj + εij (10)

where i and j index the adopter and the provider respectively; mij is a dummy variable

with value one if i and j match in the market for technology at some point; SICij, TECij,

and GEOij are the proximity metrics; Xi and Xj embody a full set of adopter and provider

specific control variables respectively which include average yearly R&D expenditures, patent

applications and number of employees plus a full set of sector of activity (at the SIC-2 level),

technology class (at the NBER36 level) and geographic location (at the U.S. state level)

dummy variables;28 and εij is an idiosyncratic error term.

Specification 2 - Predetermined distance metrics, Dataset B. In order to deal

with simultaneity we split the sample into two periods (pre and post 2000) and construct

predetermined explanatory variables. This results in the following specification

mijτ = β1SICijτ−1+β2TECijτ−1+β3GEOijτ−1+β4Xiτ−1+β5Xjτ−1+β6mijτ−1+εijτ (11)

where τ and τ − 1 denote pre and post 2000 years respectively. Pre-2000 interactions mijτ−1

are used to control for adopter-provider fixed effects.

Specification 3 - Adopter-provider fixed effects, Dataset C. In order to better

control for adopter-provider shocks we exploit the longitudinal structure of Dataset C with

28Averages are taken over all the available Compustat years from 1980 onwards.
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the following specification

mijt = β1SICijt−1 + β2TECijt−1 + β3GEOijt−1 + β4Xit−1 + β5Xjt−1 + φij + φt + εijt (12)

where t indexes five-year periods (starting in 1995 − 2000 and ending in 2005 − 2010), φij

are adopter-provider fixed effects and φt are time fixed effects. The explanatory variables

are all lagged by one period as we are still concerned about simultaneity. Time-variant

adopter and provider attributes are included in Xit−1 and Xjt−1. This specification contols

for adopter-provider fixed effects, but adopter-provider transitory shocks could still be in

place. In order to entirely rule out a bias stemming from transitory shocks we would need

instruments explaining exogenous variation in the proximity metrics over time.

6 Results

We present two sets of results. In a first stage, we use between and within adopter-provider

variation to study whether the probability of a match is orthogonal or increasing with respect

to the distance metrics after accounting for the identification problems discussed in the

previous section. In a second stage we use between adopter-provider variation to study if

the probability of a match is monotonic in the distance metrics.

Orthogonality Tables 3 to 5 report OLS estimates of Specifications 1 to 3 based on

between adopter-provider variation in the Datasets A to C. Table 6 reports adopter-provider

fixed effects estimates of Specification 3 based on within adopter-provider variation in the

Dataset C.29

Table 3 reports the results of estimating Specification 1 on Dataset A. The coeffi cients

of the distance metrics are all positive and statistically significant. This is also the case

for the control variables, all of which enter the regressions with a positive sign except for

29The main reason for using linear rather than non-linear estimators (such as probit or logit) is that linear
estimators allow dealing with fixed effects in a much simpler fashion through demeaning.
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average yearly R&D in the patent trades equation in Column (2). These results suggest that

the gains from trade are greater for firms that are closer in the market, technological and

geographical dimensions. The coeffi cients of the explanatory variables suggest that larger

firms, with higher average R&D expenditures and yearly patent applications are more likely

to match in the market for technology.

Table 4 reports the results of estimating Specification 2 on Dataset B. The results are

very similar to the ones in Table 4, which suggests that simultaneity is not a big issue in

Specification 1. The coeffi cients of the distance metrics are positively signed and statistically

significant, except for geographical proximity in the licensing within alliances equation in

Column (4) which loses its significance. Also in Column (4), the coeffi cient of the provider’s

average yearly R&D is insignificant and the coeffi cient on the provider’s average number

of yearly employees is negative. The coeffi cients on the adopter’s and provider’s average

yearly R&D remain insignificant in the patent trades equation in Column (2). The pre-2000

market interaction control is significant with a large positive coeffi cient in all the regressions.

This suggests that the pre-2000 interactions at least partly control for adopter-provider fixed

effects.

Table 5 reports pooled OLS estimates of Specification 3 on Dataset C. Notice that the

longitudinal structure of Dataset C is not yet fully exploited here. The estimates based

on the between adopter-provider variation in Dataset C are qualitatively very similar to

the ones obtained with Datasets A and B. This implies that Dataset C is not fundamentally

different from Datasets A and B, with all the datasets producing similar results when between

adopter-provider variation is exploited.

Table 6 reports adopter-provider fixed effects estimates of Specification 3 on Dataset C.

First, we focus on the results for non-alliance related interactions in Columns (2), (3) and

(5).30 The coeffi cient on market proximity is no longer significant and even turns negative

30In Section 3.1 we have shown that sampling is stable in the post-1995 period for patent trades and
non-alliance related licensing and cross-licensing. This is suffi cient to reliably exploit within variation in the
data because the dependent variables in Dataset C are defined over the post-1995 period.
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in the patent trades and licensing equations in Columns (2) and (3). The coeffi cient on

technological proximity remains positive and significant for patent trades and cross-licensing

in Columns (2) and (5). The coeffi cient on geographical proximity remains significant, albeit

only at a 10%, in the patent trades equation in Column (2). Regarding the controls, the

average number of patent applications of the adopter and the provider has a positive effect

in the patent trades and cross-licensing equations in Columns (2) and (5). The number of

employees of the provider also has a positive effect in the patent trades equation in Column

(2). Quite surprisingly, the average R&D expenditure of the adopter and the provider have

a negative effect in the licensing equation in Column (2).

Next, we discuss the results for within-alliance interactions in Columns (4), (6) and (7)

of Table 6. Notice that potential unstable sampling limits our ability to safely exploit within

variation.31 For instance, the negative sign on most of the coeffi cients could be artificially

driven by the decline in sampling intensity after the first panel period.32 With this caveat

in mind, we offer an inevitably more speculative interpretation of the results. Like in the

non-alliance related interactions, the coeffi cient on market proximity is no longer significant

except for the licensing equation in Column (4) where it is negative. The coeffi cients on

technological and geographical proximity are negative in all the equations. This negative

effect could mean that firms self-select into alliances when they are distant and do not have

the ability to understand each other’s technologies without the active involvement of the

other party.

Interestingly, average R&D expenditure enters the regressions with a positive sign while

the average number of patents enters the regressions with a negative sign. This is in contrast

with the results for non-alliance related deals where the average number of patents mainly

has a positive effect on the probability of a match. Again, one possible interpretation is

31In Section 3.1 we have shown that sampling seems targeted around 1995 for within-alliance deals, with
the number of interactions declining substantially in the post-2000 period.
32A decline in sampling causes the dependent variables to systematically decline over time (i.e. transition

from one in 1995-2000 to zero in 2000-2005 and 2005-2010) even when the explanatory variables increase,
which translates into negative coeffi cients.
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self-selection with firms which protect their technologies with patents engaging in arm’s

length transactions and firms which do not have well deliniated property rights over their

technologies resorting to more complex contractual forms of exchange such as alliances and

joint ventures.

The following summarizes the main findings in this section. First, between adopter-

provider variation yields positive effects for all the proximity metrics and most of the con-

trols, with the unanimously positive coeffi cients hinting a possible upward bias stemming

from omitted adopter-provider shocks. Second, within adopter-provider variation yields less

unanimous results. Technological and geographical proximity have a positive effect on the

probability of a match for non-alliance related interactions, but a negative effect for interac-

tions within alliances. Moreover, market proximity is no longer significant.

Monotonicity. Only between adopter-provider variation is used to study if the probability

of a match is monotonically increasing in the distance metrics. This is mainly because we

intend to produce predicted probabilities bounded between zero and one.33 Specification 1

is (re)estimated on Dataset A by probit with the proximity metrics split into five dummy

variables with value one if proximity is within a given interval (the base category is zero,

the remaining groups are [1,20), [20,40), [40,60), [60,80) and [80,100]). Such decomposition

allows us to flexibly estimate how the probability of a match varies for the different values of

the distance metrics. The predicted probabilities resulting from the estimates are displayed

in Figure 4.34

Figure 4 shows that the probability of a match is monotonically increasing in technological

and geographical proximity for (almost) every single form of exchange. A different pattern

emerges for market proximity with the probability of a match immediately raising above

33As mentioned above, nonlinear models (such as probit or logit) which bound predicted probabilities
between zero and one are not well suited to accomodate fixed effects.
34Similar figures are obtained with between adopter-provider (probit) estimtaes of analogous dummy vari-

ables decompositions of Specification 2 (Dataset B) and Specification 3 (Dataset C). Within adopter-provider
(linear) estimates of the dummy variables decomposition of Specification 3 (Dataset C) are monotonically
increasing for technological proximity only (even though insignificant).
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zero, but remaining fairly constant, for any positive value. The results for market proximity

suggest a tension between the rent creation and rent dissipation effects of market proximity.

This trade-off does not exist for technological and geographical proximity which have an

unambiguously positive rent creation effect on the gains from technology adoption without

triggering rent dissipation.

Finally, notice that Figure 4 allows us to gauge the magnitude of the effect of the prox-

imity metrics on the probability of a match. For instance, for the dependent variable that

groups all the modes of exchange ("All" in Row 1) and the technological proximity metric

(TEC, in Column 2), the probability of a match between two firms that are perfectly close

in the market and geographical spaces (i.e. SIC=100 and GEO=100) increases from 0 to

0.05 as technological proximity increases from 0 to 100.

7 Discussion

In this section we discuss the implications of the results presented in Section 6 for the R&D

spillovers literature. There are two types of spillovers: rent spillovers and knowledge spillovers

(Griliches, 1992; Hall et al. , 2010). The first type occurs when a firm purchases technologies

at prices that do not reflect their usage value. The second type occurs when a firm’s R&D

is useful to another firm in doing its own research or when it spills over to other firms due

to only partial excludability of knowledge. The topic of social returns to R&D is closely

intertwined with that of knowledge spillovers.

A common approach to measuring pure knowledge spillovers consists in constructing the

spillover pool available to firm i as
∑

j 6=i θijGj,where θij is a weighting matrix applied to the

R&D stocks of other firms (Gj).35 Coeffi cient estimates of the spillover pool (as an additional

input in a production function framework) are assumed to capture pure knowledge spillovers.

In other words, the positive effects of firm j’s R&D on firm i’s output are assumed not to

be internalized by j. The wedge between the social and private rates of return to R&D (and

35Notice that the weights θij are nothing but the proximity metrics that we have been using all along.
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the socially optimal level of R&D) are calculated according to this implicit assumption of no

internalization.

The extent to which the described approach is likely to deliver accurate estimates of pure

spillovers depends on two important assumptions. First, the proximity weights θij must

be orthogonal to market transfers. Otherwise the external knowledge pool would include

knowledge acquired on the market internalized by the provider. Second, adoption off the

market of firm i from firm j must be monotonically increasing in proximity, or else the

external knowledge pool would capture noise. Neither of these assumptions finds strong

support in our theoretical and empirical results. Orthogonality is indeed rejected both

theoretically and empirically. Monotonicity in the probability of a match has been predicted

theoretically and corroborated empirically. However, monotonicity in the probability of

adoption off the market cannot be tested empirically and has been questioned theoretically.36

It seems that estimates based on distance weighted spillover pools inevitably capture

technology transfers partly internalized by technology providers. As a consequence, the

wedge between the social and private rates of return to R&Dmight be narrower than typically

estimated.

8 Conclusion

This paper offers an integral view of the market for technology by analyzing a newly created

dataset on interactions between publicly held companies in North America that spans several

years, contractual forms of exchange, industries and technologies. Special emphasis is placed

on the relevance of market, technological and geographical proximity at shaping the market

for ideas.

We apply a basic model of knowledge transfer between a technology provider and a
36Monotonicity is generally imposed as a natural by-product of the assumption that the gains from tech-

nology adoption are increasing in proximity. Our theoretical model shows that assuming the gains from
technology adoption to be increasing in proximity is suffi cient to generate monotonicity in overall adoption
and in adoption through market transfers. However, it is not suffi cient to generate monotonicity in the type
of adoption that is conductive to pure spillovers (i.e. adoption through infringement).
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technology adopter to guide the empirical analysis. A critical assumption of the model is that

the gains from technology adoption are increasing in (market, technological or geographical)

proximity. Adoption is allowed to take place either through a patent licensing agreement or,

alternatively, through infringement. The model predicts that 1) the probability of adoption

is increasing in market proximity, 2) the probability of adoption through a match in the

market for technology is increasing in proximity and 3) the probability of adoption through

infringement is not necessarily increasing in proximity.

The analysis has implications for the regression-based spillovers literature. In particular,

the results suggest that the wedge between the social and private rates of return to R&D

might be narrower than typically estimated.

A descriptive network analysis of the data on interactions shows that the interplay be-

tween market, technological and geographical proximity goes a long way at explaining the

market for technology. A formal econometric analysis suggests that proximity has a positive

effect on the probability of a match in the market for technology even after dealing with

several identification issues. Estimates based on between adopter-provider variation yield

positive effects for all the proximity metrics. Estimates based on within adopter-provider

variation yield positive (negative) effects only for technological and geographical proximity

for non-alliance (within-alliance) interactions. The probability of a match is monotonically

increasing in technological and geographical proximity for (almost) every single form of ex-

change.

References

Acemoglu, Daron, Akcigit, Ufuk, & Kerr, William R. 2016. Innovation network.

Proceedings of the National Academy of Sciences, 113(41), 11483—11488.

Akcigit, Ufuk, Celik, Murat Alp, & Greenwood, Jeremy. 2016. Buy, Keep, or

Sell: Economic Growth and the Market for Ideas. Econometrica, 84(3), 943—984.

Ali, Ayfer, & Cockburn, Iain. 2016. Buyer behavior in markets for technology: tech-

nology proximity between firm portfolio and in-licensed patents. Mimeo.

32



Arora, A., Fosfuri, A., & Gambardella, A. 2001. Markets for Technology: The

Economics of Innovation and Corporate Strategy. Cambridge, MA: MIT Press.

Arora, Ashish, & Fosfuri, Andrea. 2003. Licensing the market for technology. Journal

of Economic Behavior and Organization, 52(2), 277 —295.

Arora, Ashish, & Gambardella, Alfonso. 2010. Ideas for rent: an overview of markets

for technology. Industrial and Corporate Change, 19(3), 775.

Arqué-Castells, Pere, & Spulber, Daniel F. 2017. Technology Markets and R&D

Spillovers. Mimeo.

Bernstein, Jeffrey I., & Nadiri, M. Ishaq. 1988. Interindustry R&D Spillovers, Rates

of Return, and Production in High-Tech Industries. The American Economic Review,

78(2), 429—434.

Bloom, Nicholas, Schankerman, Mark, & Van Reenen, John. 2013. Identifying

Technology Spillovers and Product Market Rivalry. Econometrica, 81(4), 1347—1393.

Bottazzi, Laura, & Peri, Giovanni. 2003. Innovation and spillovers in regions: Evidence

from European patent data. European Economic Review, 47(4), 687 —710.

Cassiman, Bruno, & Veugelers, Reinhilde. 2002. R&D Cooperation and Spillovers:

Some Empirical Evidence from Belgium. American Economic Review, 92(4), 1169—1184.

Cassiman, Bruno, & Veugelers, Reinhilde. 2006. In Search of Complementarity in

Innovation Strategy: Internal R&D and External Knowledge Acquisition. Management

Science, 52(1), 68—82.

Ceccagnoli, Marco, Graham, Stuart J.H., Higgins, Matthew J., & Lee,

Jeongsik. 2010. Productivity and the role of complementary assets in firms’demand

for technology innovations. Industrial and Corporate Change, 19(3), 839.

Cohen, Wesley M., & Levinthal, Daniel A. 1989. Innovation and Learning: The

Two Faces of R&D. The Economic Journal, 99(397), 569—596.

Drivas, Kyriakos, & Economidou, Claire. 2015. Is geographic nearness important

for trading ideas? Evidence from the US. The Journal of Technology Transfer, 40(4),
629—662.

33



Drivas, Kyriakos, Economidou, Claire, Karkalakos, Sotiris, & Tsionas,

Efthymios G. 2016. Mobility of knowledge and local innovation activity. European

Economic Review, 85, 39 —61.

Figueroa, Nicolas, & Serrano, Carlos J. 2013 (April). Patent Trading Flows of

Small and Large Firms. Working Paper 18982. National Bureau of Economic Research.

Fosfuri, Andrea. 2006. The licensing dilemma: understanding the determinants of the

rate of technology licensing. Strategic Management Journal, 27(12), 1141—1158.

Fruchterman, Thomas M. J., & Reingold, Edward M. 1991. Graph drawing by

force-directed placement. Software: Practice and Experience, 21(11), 1129—1164.

Gambardella, Alfonso, & Giarratana, Marco S. 2013. General technological ca-

pabilities, product market fragmentation, and markets for technology. Research Policy,

42(2), 315—325.

Gambardella, Alfonso, Giuri, Paola, & Luzzi, Alessandra. 2007. The market for

patents in Europe. Research Policy, 36(8), 1163 —1183.

Gans, Joshua S., & Stern, Scott. 2010. Is there a market for ideas? Industrial and

Corporate Change, 19(3), 805.

Griliches, Zvi. 1992. The Search for R&D Spillovers. The Scandinavian Journal of Eco-

nomics, 94, S29—S47.

Hall, Bronwyn H., Jaffe, Adam B., & Trajtenberg, Manuel. 2001 (October). The

NBER Patent Citation Data File: Lessons, Insights and Methodological Tools. Working

Paper 8498. National Bureau of Economic Research.

Hall, Bronwyn H., Mairesse, Jacques, & Mohnen, Pierre. 2010. Chapter 24 -

Measuring the Returns to R&D. Pages 1033 —1082 of: Hall, Bronwyn H., & Rosen-

berg, Nathan (eds), Handbook of the Economics of Innovation, Volume 2. Handbook

of the Economics of Innovation, vol. 2. North-Holland.

Jaffe, Adam B. 1986. Technological Opportunity and Spillovers of R&D: Evidence from

Firms’Patents, Profits, and Market Value. The American Economic Review, 76(5), 984—
1001.

Lychagin, Sergey, Pinkse, Joris, Slade, Margaret E., & Reenen, John Van.

2016. Spillovers in Space: Does Geography Matter? The Journal of Industrial Economics,

64(2), 295—335.

34



Manresa, Elena. 2016. Estimating the Structure of Social Interactions Using Panel Data.

Mimeo.

Manski, Charles F. 1993. Identification of Endogenous Social Effects: The Reflection

Problem. The Review of Economic Studies, 60(3), 531—542.

Marco, Alan C., Myers, Amanda F., Graham, Stuart J.H., D’Agostino, Paul A,

& Apple, Kirsten. 2015 (July). The USPTO Patent Assignment Dataset: Descriptions

and Analysis. Working Paper 2015-2. USPTO.

Nash, John. 1953. Two-Person Cooperative Games. Econometrica, 21(1), 128—140.

Rubinstein, Ariel. 1982. Perfect Equilibrium in a Bargaining Model. Econometrica,

50(1), 97—109.

Serrano, Carlos J. 2010. The dynamics of the transfer and renewal of patents. The

RAND Journal of Economics, 41(4), 686—708.

Spulber, Daniel F. 2013. How Do Competitive Pressures Affect Incentives to Innovate

When There Is a Market for Inventions? Journal of Political Economy, 121(6), 1007—1054.

Spulber, Daniel F. 2015. How patents provide the foundation of the market for inventions.

Journal of Competition Law and Economics, 11(2), 271.

Spulber, Daniel F. 2016. Patent licensing and bargaining with innovative complements

and substitutes. Research in Economics, 70(4), 693 —713. Special Issue on Industrial
Organization.

Teece, David J. 1986. Profiting from technological innovation: Implications for integration,

collaboration, licensing and public policy. Research Policy, 15(6), 285 —305.

35



Tables

Table 1. Top 35 adopters and providers

Adopter / # firms it adopts from Provider / # firms it provides to

1 INTL BUSINESS MACHINES CORP 308 INTL BUSINESS MACHINES CORP 330
2 HP INC 264 HP INC 261
3 MICROSOFT CORP 214 MICROSOFT CORP 208
4 PFIZER INC 179 MOTOROLA SOLUTIONS INC 179
5 INTEL CORP 167 GENERAL ELECTRIC CO 163
6 MOTOROLA SOLUTIONS INC 166 INTEL CORP 163
7 ORACLE CORP 161 ORACLE CORP 163
8 SIEMENS AG 161 SIEMENS AG 162
9 GENERAL ELECTRIC CO 153 PFIZER INC 155
10 JOHNSON & JOHNSON 144 JOHNSON & JOHNSON 133
11 TOSHIBA CORP 129 DOW CHEMICAL 131
12 BRISTOL-MYERS SQUIBB CO 129 BRISTOL-MYERS SQUIBB CO 130
13 HITACHI LTD 128 ALCATEL-LUCENT 130
14 NEC CORP 125 LILLY (ELI) & CO 121
15 GLAXOSMITHKLINE PLC 122 TOSHIBA CORP 118
16 LILLY (ELI) & CO 120 HITACHI LTD 117
17 FUJITSU LTD 115 DU PONT (E I) DE NEMOURS 114
18 ALCATEL-LUCENT 113 NEC CORP 111
19 COMPAQ COMPUTER CORP 110 FUJITSU LTD 111
20 TEXAS INSTRUMENTS INC 109 GLAXOSMITHKLINE PLC 110
21 SONY CORP 108 TEXAS INSTRUMENTS INC 107
22 NOVARTIS AG 107 COMPAQ COMPUTER CORP 105
23 ABBOTT LABORATORIES 103 SUN MICROSYSTEMS INC 102
24 SUN MICROSYSTEMS INC 99 ABBOTT LABORATORIES 96
25 DU PONT (E I) DE NEMOURS 97 CISCO SYSTEMS INC 96
26 BAYER AG 97 NOVARTIS AG 96
27 CISCO SYSTEMS INC 96 BAYER AG 93
28 PANASONIC CORP 96 PANASONIC CORP 87
29 DOW CHEMICAL 94 MERCK & CO 84
30 APPLE INC 91 AT&T CORP 83
31 BASF SE 88 APPLE INC 83
32 SANOFI 80 HONEYWELL INTERNATIONAL INC 82
33 EASTMAN KODAK CO 80 BASF SE 82
34 LSI CORP 80 EASTMAN KODAK CO 81
35 DANAHER CORP 79 SONY CORP 81
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Figures

Figure 1. Interactions by execution year
This figure provides histograms for the number of unique pairing interactions by execution year for
each contractual mode of exchange. Only one pairing interaction per execution year is kept (i.e.
each pairing is counted only once per year per contractual mode of exchange even if it has more
than one record with the same execution date for the corresponding mode of exchange).
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Figure 2. Network of interactions in the market for technology
Each node represents a firm (with node size being proportional to the number of interactions of
the firm) and each edge represents an interaction between two firms. Nodes are arranged following
the Fruchterman and Reingold (1991) algorithm. The graphs have been generated with Gephi.

A. Colored by main sector of activity

Notes: Each color represents a SIC-2 code. Only the following six sectors (with the highest number
of interactions) are colored: 28-Chemicals and allied products; 36-Electronic and other electrical
equipment and components (except computers); 73-Business Services; 38-Measuring, analyzing
and controlling instruments; Photographic, medical, and optical goods; Watches and clocks; 35-
Industrial and commercial machinery and computer equipment; and 37-Transportation Equipment.
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B. Colored by main technological area

Notes: Each color represents a technology class from the 36 technology class aggregation in the
NBER PDP (see Hall et al., 2001). The main technology class is defined as the modal class of the
patents of the firm. Only the following six classes (with the highest number of interactions) are
colored: 22-Computer hardware and software; 21-Communications; 31-Drugs; 19-Miscellaneous-
chemical; 32-Surgery and medical instruments; and 33-Biotechnology.

44



C. Colored by main inventor location of the firm

Notes: Each color represents a US State corresponding to the modal inventor location of the firm
(which turns out to be the headquarter of the firm in most of the cases). The following six states
(with the highest number of interactions) are colored: California (CA), Massachusetts (MA), Texas
(TX), New York (NY), New Jersey (NJ) and Illinois (IL).
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Figure 3. Interaction matrices
The graphs in Figure 2 show the structure of interactions aggregated by sector of activity, technology
areas and US States. Each cell represents an interaction between two units (i.e. SIC2 sectors, NBER
PDP technology classes or US States). Cell color intensity is increasing in the percentage of firm
interactions taking place within each cell out of the total number of interactions.

A. Interactions by sector of activity

Notes: The main industry of the firm is difined as the SIC-2 code in Compustat.
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B. Interactions by technology class

Notes: The main technology class is defined as the modal class of the patents of the firm.

47



C. Interactions by location

Notes: The main research location is defined as the U.S. state where most of the inventors of the
firm’s patents are located.
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Figure 4. Predicted probability of a match
The predicted probability of a match (y-axis) is plotted against the proximity metrics (x-axis)
using probit estimates from Specification 1 (Dataset A) but with the proximity metrics split into
five dummy variables with value one if proximity is within the corresponding interval (the base
category is zero, the remaining groups are [1,20), [20,40), [40,60), [60,80) and [80,100]). Rows
are regression specific for the indicated dependent variable. Columns are distance metric specific.
The explanatory variables are evaluated at their mean. The proximity metrics are set at their
maximum value (100) when used as controls (e.g. TEC=100 and GEO=100 when calculating the
probabilities for the different intervals of SIC in column one). The industry sector, technology class
and geographic location dummy variables included in the regressions when estimating the results
displayed in Tables 3 and 4 have been exluded from the probit regressions. This is because many
of such dummy variables perfectly predict the outcomes and are authomatically dropped from the
regressions, or do not generate standard errors when forced to remain in the probit regressions. So
we have dropped the full set of dummy variables in order to estimate the probits on the samples
used in Tables 3 and 4 and to produce predictions with confidence intervals. Including or excluding
the full set of dummy variables barely affects the estimates.
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(Continuation)
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A Theory Appendix

Proof of Proposition 2. From the definition of G(x, θ) and the definition of the outside

options πP (x, θ) and πA(x, θ), it follows that G(x, θ) is continuously differentiable in its

arguments for all x except at x̃ where there is a discontinuity. If x∗ < x̃, licensing occurs if

x∗ ≤ x < x̃ and the outside option is non-adoption.

G(x, θ) = (1− λ)t(x, θ)− cP − cA.

If x∗ > x̃, licensing occurs if x∗ ≤ x < ∞ and the outside option is infringement because

x > x̃. So, if x∗ > x̃,

G(x, θ) = p(1− λ)t(x, θ)− cP − cA.

So, in either situation, G(x∗, θ) = 0 and we havedx
∗

dθ
= −tθ(x∗,θ)

tx(x∗,θ)
< 0 and d(1−F (x∗(θ))).

dθ
=

−f(x∗(θ))dx
∗

dθ
> 0. If x∗ = x̃, there is a discontinuity and it occurs at an upward jump,

G+(x̃, θ)−G−(x̃, θ) = (1− p)(1− λ)t(x, θ) > 0.

If x∗ = x̃, G(x∗, θ) > 0 and the outside option is infringement for x∗ ≤ x. Because of the

discontinuity, there is a range of θ such that x∗ = x̃, so that inside this range, dx
∗

dθ
= dx̃

dθ
. From

ΠA
0 (x̃, θ) = πA0 , it follows that

dx̃(θ)
dθ

= − tθ(x̃,θ)
tx(x̃,θ)

< 0, which implies that dx∗

dθ
< 0 for x∗ = x̃

and d(1−F (x∗(θ)))
dθ

= −f(x∗(θ))∂x
∗

∂θ
> 0. It can be shown that dx

∗

dθ
< 0 holds at the endpoints of

the range of θ where x∗ = x̃. An increase in θ causes the outside options to shift from those

with infringement to those without technology transfer. An increase in θ cannot cause the

outside options to shift from those without technology transfer to those with infringement.

It follows that dx∗

dθ
< 0 and d(1−F (x∗(θ))).

dθ
> 0. �

Proof of Proposition 3. The probability of adoption is given by Pr(adoption) = 1 −
F (min{x̃(θ), x∗(θ)}), which is increasing in θ if x̃(θ) ≥ x∗(θ) by Proposition 2. If x̃(θ) <

x∗(θ), dx̃(θ)
dθ

= − tθ(x̃,θ)
tx(x̃,θ)

< 0. It follows that ∂(1−F (min{x̃(θ),x∗(θ)}))
∂θ

> 0.�
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B Data Appendix

In the document “Matching assignees and assignors in the USPTO Patent Assignment

Dataset to Compustat firms”we describe the creation of the ASSIGNEE/OR-GVKEY file

which matches assignor/ee names in the USPTO Patent Assignment Dataset to Compustat

GVKEYs. This file almost directly produces the dataset on patent trades. Regarding the

other forms of technology transfer, we match the names of the parties in the Licensing, Cross-

licensing and R&D alliances deals to assignor/ee names in the ASSIGNEE/OR-GVKEY file.

Patent trades Using the ASSIGNEE/OR-GVKEY link we retain “assignments of the

assignor’s interest”in the USPTO Patent Assignment Dataset in which at least one of the

assignors and one of the assignees are linked to a GVKEY. If assignors/ees are linked to

multiple GVKEYs we use the relevant GVKEY during the execution date of the assignment.

We then create a file with all the assignee-assignor interactions keeping just one observation

per pair and removing assignments in which the GVKEY of the assignee and the assignor

are the same (this happens when patents are reassigned between firms belonging to the same

corporate group). The final file contains 4,495 unique GVKEY interactions taking place

between 1981 and 2013.

Licensing We purchased a dataset from ktMINE including, among other information, the

name(s) of the licensor(s) and the licensee(s) of 12,122 licensing deals (some of which could

be duplicates) extracted from SEC filings. We cleaned and harmonized licensor and licensee

names obtaining 12,304 unique names. We were able to match 3,794 of these names to

assignee/or names in the ASSIGNEE/OR-GVKEY file. We retained deals with at least one

licensor and one licensee linked to a GVKEY finding 3,795 unique GVKEY interactions.

We also downloaded 14,270 alliances with a licensing agreement flag from Thomson

Reuters Joint Venture & Strategic Alliances Database. Name cleaning and harmonization

yielded 12,976 unique names. We were able to match 2,910 of these names to assignee/or

names in the ASSIGNEE/OR-GVKEY file. We retained deals with at least one licensor and

one licensee linked to a GVKEY finding 3,938 unique GVKEY interactions.

Overall, there are 9,833 GVKEY interactions (some interactions are both in the ktMINE

and Joint Venture & Strategic Alliances Database databases).

Cross-licensing We created a list of cross-licensing deals by carrying out an exhaustive

search across forms disclosed to the SEC. We downloaded all the SEC forms filed from 2000 to

2014 (both inclusive) containing the word “cross-licensing”(or related strings such as “cross

licensing”, “cross-license”or “cross license”). This resulted in approximately 22,500 forms
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(mainly 10-K and 10-Q, but also 424B3, 8-K, S-4 and other types of forms). We carefully

read each one of these forms and extracted information on all the 4,375 instances in which

the identity of the parties in the agreement was disclosed. Some of these refer to repeated

cross-licensing deals disclosed by filers year after year. We complemented this list with a

Google search over two Compustat samples that are likely to engage in cross-licensing. The

first one of these samples comprises 1,482 firms with an average patent stock of more than 20

patents. The second one includes 1,213 firms with no patents but with average yearly R&D

expenditures above $3 million. We searched for the name of the selected companies together

with the word “cross-licensing”obtaining 599 cross-licensing deals with information on, at

least, the names of the cross-licensees. We appended the SEC and Google searches together

and harmonized the names of the cross-licensees finding 2,608 unique names. We were able

to match 1,492 of these names to assignee/or names in the ASSIGNEE/OR-GVKEY file.

We retained deals with at least two cross-licensees linked to a GVKEY finding 1,589 unique

GVKEY interactions. The flow of technology transfer is bidirectional in cross-licensing

agreements. This implies that the number of knowledge adopters through cross-licensing is

3,178 (1,589*2).

Additionally, we downloaded 8,434 alliances with a cross-technology transfer agreement

flag from Thomson Reuters Joint Venture & Strategic Alliances Database. Name cleaning

and harmonization yielded 9,397 unique names. We were able to match XXX of these names

to assignee/or names in the ASSIGNEE/OR-GVKEY file. We retained deals with at least

two cross-licensees linked to a GVKEY finding 2,371 unique GVKEY interactions. The flow

of technology transfer is bidirectional in cross-licensing agreements. This implies that the

number of knowledge adopters through cross-licensing is 4,742 (2,371*2).

Overall, there are 3,812 GVKEY interactions and 7,622 adopters (some interactions are

both in the ktMINE and Joint Venture & Strategic Alliances Database databases).

R&D alliances We downloaded all the 16,160 R&D alliances available in SDC platinum

in March 2016. We cleaned and harmonized the names of the firms forming the alliance

obtaining 13,576 unique names. We were able to match 2,814 of these names to assignee/or

names in the ASSIGNEE/OR-GVKEY file through CUSIP numbers and harmonized names.

We retained R&D alliances where at least two of the firms were successfully linked to a

GVKEY. This resulted in 4,486 unique GVKEY interactions. The flow of technology transfer

is bidirectional in R&D alliances. This implies that the number of knowledge adopters

through R&D alliances is 8,972 (4,486*2)
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