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Abstract

In this study, we estimate the effect of standardization on innovation. A major diffi-

culty arises because innovation itself potentially impacts standardization, which leads

to reverse causality. To deal with the resulting endogeneity, we apply machine learning

methods to predict counterfactual innovation paths. Our identification strategy exploits

unpredictable standards, i.e. standards that could not be foreseen by the market. For

the corresponding technologies, we use innovation history to predict what the amount

of patents would have been in the case of no standards. We use these predictions as

counterfactual (no-treatment) outcomes to estimate the effect of the standards. We find

a positive effect of standardization on subsequent patenting activity, but no effect on

patent quality.
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1 Introduction

We evaluate the effect of technology standards on innovation. Technology standards con-

sist of a set of voluntary rules and requirements for a technological system and have the

objective to ensure interoperability across products. Through their development process,

and through the choice of one of many competing technologies, standards potentially im-

pact future innovation activities. Identifying their causal effect on innovation, however,

is a non-trivial task. The major problem is the reverse causality relationship between

standardization and innovation. In particular, standards might arise precisely due to

already existing innovation in a certain technology area.

We establish a novel identification approach to the deal with the endogeneity of stan-

dards. Our approach consists of three steps. In a first step, we build a prediction of

whether a standard will be established in a given period, a given country, and a given

technological class. The objective of this first step is to mimic the expectation formation

of the firms using market information on the uncertain future events of establishing a

standard.

In a second step, we construct predictions of counterfactual post-treatment (i.e. post

standard release) innovation paths. An innovation path in a certain technology class is

defined in this paper as the number of patent applications within the technology class

followed over time. We restrict our attention to those technology categories, for which

a standard is established in a given period despite a high predicted probability from

our first step of no standard establishment. The intuition for this choice is the follow-

ing. Consider a technology group, for which firms anticipate a high probability that

no standard will be released. Then their innovation activities just prior to the event

of the standard will correspond to those that firms would have exerted in the counter-

factual no-standard scenario. The event of establishing a standard in that technology

class can be viewed as a shock to the market. Thus, for those technology classes, we

can use pre-treatment (i.e. prior to the standard) information to predict the future,

post-treatment innovation path for the counterfactual no-treatment case. In particular,

the pre-treatment information does not contain anticipation effects.

Steps 1 and 2 are generic in the sense that they can be constructed with prediction ap-

proach. In our empirical evaluation, we use machine learning methods - neural networks

and random forests, respectively. These methods have been shown to deal well with
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large number of covariates and nonlinear model functions.

In a third step, we compare the actual innovation paths in the ”shocked” technology

categories to the predicted innovation paths. This comparison allows us to estimate the

treatment effect of the technology shocks (the standards). The treatment effect is local

in the sense that this is a treatment effect on a particular group of treated units: those,

where no anticipation effects took place.

Our three-step approach complements existing econometric techniques. It relies on the

assumption is that the information contained in our dataset correctly accounts for an-

ticipation of standardization events. This assumption underlies the validity of the first

step. The assumption is related to CIA- and conditioning-on-the-propensity-score-type

assumptions (e.g. as in matching estimation). The major advantage of our approach

is that we do not require common support in the covariates. Each (technology) unit

serves as its own counterfactual match. The second step of our approach draws on the

paper of Burlig et al. [2017] who also use past histories to construct counterfactuals.

Our method accounts for the complex nature in which innovation activities are planned

and implemented at the level of the firm. In particular, anticipation effects are likely

to shift the paths of innovation already prior to treatment, invalidating the approach of

Burlig et al. [2017]. Our initial prediction step accounts for the anticipation of the firms

and ensures an unbiased prediction in the second step.

We contribute to the evidence on the effect of standardization on innovation in particular

to DTI [2005], Swann [2010], Blind et al. [2017] and Layne-Farrar [2013].

Our results indicate a positive effect of standardization on subsequent patenting activity,

but no effect on patent quality. Furthermore, our results do not support the technology

selection theory of standards at the level of the economy.

The paper is structured as follows. Section 2 describes the institutional backgroud of

standardization and the data, and section 3 our empirical strategy. Section 4 shows the

results and is divided in two subsections. In section 4.1, we present the results of the

first step of our methodology, the prediction of standard events, while in section 4.2, we

create the counterfactual innovation path for unpredicted standards and estimate the

effect of standardization on innovation. Section 5 concludes.
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2 Institutional background and data description

2.1 A brief overview of the institutional setup

The ecosystem of standard setting organizations

Standards may be defined as ”documents that provide requirements, specifications,

guidelines or characteristics that can be used consistently to ensure that materials, prod-

ucts, processes and services are fit for their purpose.”1 Another function of standards is

the reduction in variety which leads to a selection among competing technologies (Tassey

[2000], Blind and Jungmittag [2008]). Unlike regulations, standards are rules with no

compulsory character, whose success depends solely on whether companies voluntarily

decide to adopt them or not. Standards, therefore, can be understood as self-regulatory

actions of an industry (Rysman and Simcoe [2008]).

Since standards are voluntary rules, they can be established by any company or group of

companies. In practice, one can distinguish between four types of agents that establish

standards. First, single companies might develop a standard on their own. Standards

developed by single companies are referred to as ”proprietary specifications” (Bekkers

et al. [2014b]). The firm retains full control over the specification and its evolution, and

the specification typically serves the particular interests of the firm. When the specifi-

cation gains market success, it is referred to as a ”de facto standard”. An example here

is the Video Home Standard (VHS) developed by the JVC.

More commonly, standards are established by formal standard developing organizations

(SDOs). Depending on the scope of their standards, formal SDOs can be national or

international. National SDOs are entities that are formally recognized by the regulators

as standard developing organizations (Bekkers et al. [2014a]). They are ”membership-

driven bodies that bring together standardization experts - often from competing compa-

nies and from governments, academia and civil society - to develop standards in response

to priorities determined by public- or private-sector members” (Bekkers et al. [2014b]).

An example for a formal national SDO is the German Institute for Standardization

(DIN). Standards can also be established by quasi-formal SDOs, which are very similar

in terms of structure and status to the formal SDOs but do not have a formal recognition

by the regulators. An example here is the the World Wide Web Consortium (W3C).

1International Organization for Standardization (ISO), What is a standard?, http://www.iso.org/
iso/home/standards.htm
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Finally, standards can be developed also by informal industry organizations called con-

sortia (also fora or Special Interest Groups (SIGs)). A consortium consists of private

sector members that share a common interest. It may limit the number of participants

in order to achieve a more efficient and quick standard development process. Consortia

may be formed for developing a single standard or for a broader scope.

The process of developing a standard

Developing and adopting a standard is a complex process that may take up to several

years. Although the characteristics for this process exhibit a substantial heterogeneity

across different SDOs, there are also common features. As an example, a consensus

among the members of the SDO on the standard’s scope and context must be reached

before a standard is released. Thus, typically, a standard must pass some sort of ballot.

In addition, most of the SDOs have (formal or informal) rules that concern intellectual

property rights (IPR) on technologies necessary for the adoption of the standard (the

most prominent example being here standard essential patents (SEPs)). These policies

aim at ensuring fair conditions for SEP holders and applicants once the standard is

adopted. Examples for such policies are ensuring transparency about and licences for

SEPs, preventing patent hold ups, preventing too high cumulative fees, and many more

(see Bekkers et al. [2014a] for a detailed discussion).

Uncertainty related to the process of developing a standard

In many cases there is a substantial uncertainty in the process of developing a standard.

Although often a working group is setup by the SDOs to elaborate a draft proposal,

the final outcome might not be foreseeable to the participants until the very end. One

rather amusing example is the development of the Computer Graphics Reference Model

by the International Standardization Organization (ISO), (ISO [1992]). An ad hoc group

was set up by ISO to investigate the feasibility of creating a standard, and a year later,

two competing approaches were established (see Rada et al. [1994] for a detailed de-

scription of this case). It took the working group three further years to realise that the

first approach was a process-oriented view and the second a data-oriented one. The two

approaches were subsequently merged into one.

Even after a draft is established, a substantial uncertainty still resides in the subsequent

standard setting phase. One part of it is related to the negotiation process that reflects
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the complex interplay of (often conflicting) interests. An unsatisfactory ballot can re-

sult in a subsequent refinement of the standard before a final consensus is achieved. A

second part of the uncertainty is due to the disclosure of SEPs by the patent holders.

In particular, it may be the case, that even the SEP holders are not aware of all of

their standard-relevant patents. Such a patent might however be discovered ex post. In

addition, participants might not be aware of patents owned by third parties that have

been disclosed. Finally, a participant might simply realize that a known SEP has a much

higher value for the firm. All of these cases might lead to a revision of the standard (e.g.

by using an alternative technology) or to a withdrawal of the standard altogether if the

former is not feasible (Bekkers et al. [2014a]).

All these aspects of the standard setting procedure can make its outcome uncertain even

for involved participants. Our empirical strategy relies on identifying this uncertainty.

2.2 Data sources

Data used for prediction of standards

To predict the timing of a release of a standard, as described in section 3.3, we use data

from several sources.

First, we retrieve data on standards from the database Perinom. It contains information

on national standards from 27 countries, as well as on European and global standards.

We dispose of information on the publication date, the issuing SDO, the country, infor-

mation on the content of the standards (such as the title, the abstract, the language),

as well as the technological classification according to the International Classification

for Standards (ICS) (a given standard can be categorised with a combination of several

ICS classes). We can also track international relationships between standards, i.e. to

which extent standards from different SDO’s are related to each other and how similar

they are. In particular, when releasing a standard, a SDO should publicly disclose if

the standard is equivalent to some already existing one (or a modified version of it), a

process which, ironically, is itself standardized by an ISO standard (ISO/IEC Guide 21).

We use this information to determine which countries have implemented international

and European standards, and to distinguish whether a country has developed or adopted

a standard. We only use newly developed standards and exclude adopted ones in our

analysis since we are interested in the effect of technological shocks to the market. Stan-

dard adoption can also affect innovation, however, the effect might not be comparable
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to the implementation of a new and unexpected standard. Furthermore, expectations

about standard development and adoption might follow different patterns.

Second, for each of the 27 countries in the Perinom database, we extract GDP per capita,

total population, R&D expenditure as a percentage of GDP, the mean tariff rate, the

natural resource rent as a percentage of GDP, and the categorization of countries in

high vs. low income countries (time varying) for each year from the World Bank’s World

Development Indicators (WDI) database. In addition, we also obtain trade data on

country and product level from the United Nation’s UNCTAD database.

The choice of these variables is motivated in section 2.5.

Patent data

We extract patent data from Patstat, a database of the European Patent Office (EPO)

that collects and structures information on patents from 38 patent authorities world-

wide. We observe detailed characteristics for each patent such as technology category,

owner, inventor, filing date, and all kinds of changes in the patent’s life time (renewal,

withdrawal, etc.).2 Our main dependent variable is the number of patent applications in

a given period, country and technology area. This variable can be interpreted as a proxy

for innovation. To account for patent quality, we also calculate the average number of

forward citations to patents of a technology category.3

2.3 Linking data sources and sample definition

Standards and patents are classified with different technology classification systems. In

particular, patents are typically classified according to the International Patent Classifi-

cation (IPC) system and/or according to the Cooperative Patent Classification (CPC),

whereas standards are classified according to their own system (the ICS). As of today,

there exists no publicly available concordance table that links the IPC (or CPC) to the

ICS categories. In order to identify the relevant patent technology classes for a standard,

we use data on declared SEPs from the Searle Center database Database on Technol-

ogy Standards and Standard Setting Organizations. This database combines data on

standards similar to Perinorm with information on the SDOs themselves. A major ad-

2 For a detailed description of the database see European Patent Office [2018].
3For patent counts and citations as proxies for innovative activities see for example Acs and Audretsch

[1989], Hagedoorn and Cloodt [2003].
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vantage of this database is that it contains information on SEP declarations and reports

the patent identification numbers of the SEPs. These declarations make it possible to

link the ICS classes of the standards to the International Patent Classification (IPC)

numbers of the patents. SEP declarations do not exist for all standards, either because

the standard does not include patented technologies or because the relevant patents are

not declared publicly as SEPs. Furthermore, some argue that firms tend to over-declare,

i.e. declare patents that are not really essential to the standard (Stitzing et al. [2017]).

This limits our sample of standards to those where information on SEPs is available.

We only consider newly developed standards and exclude adopted standards. We use

international relationships in order to link international or European standards to coun-

tries. The developing country is then the country that first adopted an international or

European standard.

In order to link trade to technology classes, we use the concordance table provided by

Lybbert and Zolas [2014]. This table links product categories from the Standard In-

ternational Trade Classification (SITC) (used also in the UNCTAD database) to IPC

classes. The matching is done through keyword searches in the patent documents and

allocates probability weights to each SITC-IPC pair. We obtain trade data on the tech-

nology level by weighting exports and imports from the UCTAD database with these

probability weights and linking them to standards through the ICS-IPC matches.

2.4 Descriptive statistics

Our final dataset contains 143,451 observations and 253 technologies (i.e. ICS combina-

tions). Every observation is defined as a combination of a technology, a country and a

year. We count 13,244 standardization events, i.e. about 9% of the observations. The

scarcity of standard events makes prediction particularly challenging. A naive prediction

of no standardization event for all years would already result in a prediction accuracy

of 91%, i.e. 91% of cases are predicted accurately. Our data represents only a fraction

of all available standards in Perinorm. This is mainly due to the ICS-IPC matching

using SEP data which was not possible for all technologies. We also loose some stan-

dardization events by considering the period of observation from 1995 to 2015 which

excludes older and some more recent standards. Figures 1 and 2 show the distribution

of standardization events over the available years and countries. Figures 8 and 9 in the

appendix show the same distributions for the whole set of standards in Perinorm for the
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same time period. These exclude international and European standards which have bee

allocated to countries as described in section 2.3.

Figure 1: Number of standards over years
13,244 standards
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Figure 2: Number of standards over countries
13,244 standards

Table 1 presents descriptive statistics of all input variables for standard prediction as

well as of the standardization event variable itself and our variables of interest, the num-

ber of patent applications and the average number of 5-years forward citations, which

serve as our proxy for innovation. Furthermore, we show average values of all vairables

by country in tables 15 and 16 in the appendix.
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Table 1: Descriptive statistics

Mean Standard dev. Min. Max. No. of ob-

servations

Standard event (0/1) .0923 .2895 0 1 143451

Exports in tech. (mio. USD) 253 575 .0003 8784 143451

Imports in tech. (mio. USD) 234 500 .0025 6631 143451

Patent stock in tech. (thous.) 38 111 0 1049 143451

Total patent stock (mio.) 11 41 0 621 143451

GDP per capita (thous. USD) 32 21 1 92 143451

Total population (mio.) 99 244 3 1371 143451

Standard stock in tech. (thous.) .6527 3 0 43 143451

R&D expenditure (% GDP) .0179 .0088 -.0026 .0429 143451

Mean tariff rate .0438 .0399 0 .2382 143451

Natural resource rent (% GDP) .0179 .034 .0001 .2175 143451

Number of patents in tech. (thous.) 8 21 0 186 143451

Total number of patents (mio.) 2 8 0 108 143451

Number of patent citations 7 71 0 2880 132825

Cumulative number of patent citations 35 323 0 11776 132825

Average number of 5 years citations 91 499 0 7101 132825

Note: The unit of observation is on the country - technology category - year level.

Table 2 compares descriptive statistics of all input variables of years where a standard-

ization event occurs in the following years with years where without standardization.

Years preceding a standardization event are characterized on average by less exports

and imports, smaller total and technology related patent stocks, a lower mean tariff rate

and a lower natural resource rent. GDP per capita, population size, standard stocks

within the technology area and national R&D expenditure are higher for these years.

T-statistics for the mean comparisons are reported in the table. All differences are sig-

nificant at the 95% confidence level.

11



Table 2: Descriptive statistics by standard and no-standard years

Standard No standard

Mean Standard

deviation

Mean Standard

deviation

Difference

in means

t-statistic No. of ob-

servations

Exports in tech. (mio. USD) 171 475 254 561 -82 -16 143451

Imports in tech. (mio. USD) 165 445 235 489 -69 -15 143451

Patent stock in tech. (thous.) 30 99 38 111 -9 -9 143451

Total patent stock (mio.) 8 35 11 41 -3 -9 143451

GDP per capita (thous. USD) 34 19 32 21 2 10 143451

Total population (mio.) 109 255 98 242 11 5 143451

Standard stock in tech. (thous.) 4 6 .2524 2 4 181 143451

R&D expenditure (% GDP) .0182 .0084 .0177 .0089 .0005 6 143451

Mean tariff rate .0358 .032 .0452 .041 -.0095 -25 143451

Natural resource rent (% GDP) .0145 .0301 .0186 .0348 -.0041 -13 143451

Number of patent citations 6 60 7 74 -.6669 -.9661 143451

Cumulative number of patent citations 25 220 30 282 -5 -2 143451

Average number of 5 years citations 77 412 92 508 -16 -3 143451
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In table 3, we compare our output variables by years with and without standardization

event. More precisely, the table reports the average increase of patent applications and

citations one to five years after the year of observation compared to the average number

of patent applications and citations of the preceding five years. The number of patent

applications increases for both, years with and without standard. However, the increase

is on average higher if no standardization event happened. This naive comparison be-

tween treated and untreated years would lead to the conclusion that standardization

reduces innovation. No difference can be found for patent citation. The differences are

small and not significant at the 95% confidence interval. As we will see in section 4, our

estimation method, which accounts for predictability of standards, suggests a positive

relationship between standardization and patent applications. The simple comparison

of means between treated and untreated is therefore misleading.

Table 3: Patent applications and citations - Before-after and Diff-diff

Standard No standard

Years after

treatment
Mean Standard

deviation

Mean Standard

deviation

Difference

in means

t-

statistic

No. of

observa-

tions

Patent applications

1 year 242 4938 414 5986 -171 3 129789

2 years 356 5612 614 6701 -258 4 122958

3 years 463 6219 803 7460 -341 5 116127

4 years 562 6858 1001 8271 -439 5 109296

5 years 678 7616 1181 9010 -503 5 102465

Patent citations

1-year lead 3 61 2 67 .6945 1 132825

2-years lead 4 64 4 71 .3941 .587 126500

3-years lead 6 69 5 73 .5482 .7668 120175

4-years lead 7 70 6 74 .3908 .5209 113850

5-years lead 7 71 7 76 .0525 .0663 107525

Note: The table reports the difference between the average patent count 1-5 years after the treatment

period and the lagged patent counts averaged over the 5 years preceding the treatment period.

2.5 Variable selection for standard prediction

To our knowledge, the likelihood of standardization has not been studied empirically

yet. In order to discuss the predictability of standards, it is important to understand
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how standards are created. The first step of standardization emerges from the idea of

one or more market participants. The initiators then have to find enough support for

their idea and a standardization body to sponsor it. Standards are built on the beliefs

and understanding of its authors about the market and are either created in anticipation

of market changes or based on current practice. Anticipatory standards are especially

implemented in sectors with short product life cycles such as the ICT sector (Cargill

[2011]). Chiao et al. [2007] describe standard development as a process which often

takes place at an early stage of the technology development. Firms can seek to obtain

a comparative advantage by initiating the standardization process at this early stage.

Cargill [2011] examines sources of standardization failure at different stages of standard-

ization and argues that in the very early stage standardization can fail due to a lack of

interest of market participants to standardize or to bear the costs of standardization.

Another early source of failure is disagreements between different parties, notably about

intellectual property rights. Furthermore, standardization is influenced by the innovative

activity within the technology area. Chiao et al. [2007] indicate, for example, that firms

devote a lot of effort to the standardization process by making important investments

in R&D. Loyka and Powers [2003] discuss factors influencing global product standards

and relate it to market, industry and company factors. Market factors describe country

specific aspects such as consumer characteristics, economic development and infrastruc-

ture. Industry factors include market structure, product and production particularities,

competition and technological aspects. Company factors relate rather to the adoption of

product standards within the companies. He also argues that standardization becomes

necessary as an economy develops due to the increasing complexity of the society and

the industrialization of the economy. Moreover, the international trade literature has

identified standards as potential barriers or promoters of international trade (Hallikas

et al. [2008], Biddle et al. [2012], Chiao et al. [2007], Swann [2010], World Trade Orga-

nization). Standards are often implemented in response to the countries’ position in the

international market space and frequently create tensions between the developed and

the developing world due to differences in adoption costs and an unequal distribution of

intellectual property rights (Gibson [2007], Ernst [2011]). It is also worth noting that

standardization is a costly process and requires a certain institutional structure. Only

very few low income countries dispose of a standardization body.

Our input variables for standard prediction include technology related exports and im-

ports in order to capture international trade effects on standardization. Macroeconomic

development is captured by GDP per capita, population and a high income dummy.
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Technology related and total patent stocks as well as R&D expenditure as a percent-

age of GDP capture the importance of intellectual property rights and innovation for

standardization. We furthermore include the age of the technology and the number of

existing standards worldwide within the technology category in order to control for the

anticipatory character of the standards. Finally, we include country and year dummies

in order to capture trends in time and space.

3 Empirical strategy

3.1 Microeconomic foundations

We use a standard on the (ethical) use of Artificial Intelligence (AI) in industrial appli-

cation to motivate the first approach of our empirical strategy. A proposal for such a

standard is currently under development by an expert committee of ISO (the ISO/IEC

JTC1 committee). Consider a firm that can spend in period t = 0 a total of 1 on R&D

activities. The firm can adopt a technology that optimally prepares the firm for a stan-

dardization event in t = 1. As an example, the firm could hire researchers trained in

developing certain types of algorithms. Or it can change those of its current models

that use a certain type of information (e.g. race) in order to make them ”more ethical”.

Adopting this technology is costly and the cost equals C ∈ [0, 1]. When a standardiza-

tion event occurs in t = 1 and the firm is properly prepared, the R&D activities of the

firm yield a return of ρ1. When there is no standardization event in t = 1 and the firm

prepares in t = 0, the R&D activities yield a return of ρ2. Finally, when the firm does

not prepare and there is an event, the R&D activities yield a return ρ3. We assume

that ρ1 > ρ2 > ρ3 and set ηi := 1 + ρi for i = 1, 2, 3. The motivation behind this

assumption is that if the firm correctly predicts a standardization event, its preparation

might give it an early-adopter advantage, e.g through developing patents on standard-

based algorithms.4 Let the firm-specific discount rate be τ and the (possibly subjective)

probability for a standardization event in t = 1 (as seen from t = 0) be p. When the

firm adopts a technology as a preparation for a future standard, its expected profit in

t = 0 is

Π0,S = −C +
p(1− C)η1 + (1− p)(1− C)η2

1 + τ
. (1)

4 In Europe, an algorithm can be patented only if it is a part of mixed-type invention, which also
solves a technical problem in an innovative way (IAM [2018]).
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In the case of no preparation, the expected profit of the firm in t = 0 is

Π0,N =
pη3 + (1− p)η2

1 + τ
. (2)

The firms adopts a standardization technology iff

Π0,S > Π0,N , (3)

which is equivalent to

p >
C(1 + τ + η2)

(1− C)η1 + Cη2 − η3
=: p̄ (4)

Thus, if the probability for a standard is lower than a threshold p̄, the firm behaves in

t = 0 as if there will be no standard in t = 1 (namely, it does not invest in a future

standard). We refer to this case as ”No anticipation”.

The idea of our identification strategy is to exploit this decision rule in the following

way. Suppose that we can estimate the probability p. If we knew p̄, then we could

isolate all the cases in which there was a surprise for the firm, i.e. it decided not to

invest in standardization technology and there was a standard or vice versa. Using these

surprises yields a source of identifying variation. In particular, one can use the non-

prepared trajectory of patents until t = 0 in order to predict how many patents there

would have been in t = 1 had there been no standardization event. This prediction can

be interpreted as a counterfactual post-treatment patent trajectory.

There are two pitfalls related to this strategy. First, in our paper we consider innovation

on a national level, and not on a firm level. This problem could be solved by consid-

ering all firms in the given technological area of the national market. In particular, if

we knew all thresholds of the firms operating on this market, we could either aggregate

the procedure firm by firm, or simply pick the highest threshold in a given period (and

use considerations identical to those in the previous paragraph applied to this highest

threshold).

Second, p̄ is not known to the researcher. Estimating it would involve substantial as-

sumptions on the future profits of the firm, which are hard to be elicited from the data

particularly in the case of standardization. We therefore choose the threshold p̄ with the

highest prediction accuracy in our main results and analyze the sensitivity of our results

with respect to changes in p̄.
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3.2 Econometric framework

We cast our econometric problem in the Rubin Causal Model framework (Rubin [1974]).

Denote by Dit the random standardization indicator for time t and technology category

i, i = 1, . . . , n, t = 1, . . . .T , where Dit = 1 denotes the event ”A standard is introduced”

(we omit the country index for simplicity). Define Yi,t(d) to be the potential outcome

of interest in period t and technology i when the treatment is equal to d ∈ {0, 1}. For

simplicity of exposition, assume that the standards are introduced at the beginning of a

period and the outcome is realized at the end of the same period. The notation can be

generalized to a multi-period gap between treatment and outcome in a straightforward

way.

We are interested in estimating the average causal effect

ATE = E[Yi,t(1)− Yi,t(0)]. (5)

However, for each t and i, only one of Yi,t(1), Yi,t(0) is observed. This problem is referred

to as the Fundamental Problem of Causal Inference (Holland [1986]).

Our approach identifies a conditional version of equation (5) in three steps. The first

step aims at isolating those standards that surprised the market. We pursue this step by

using a rich dataset to predict whether a standard will be released or not. In particular,

let Fl be the information at some point in time l that agents can use to estimate the

propensity score pi,t = P{Di,t = 1} for technology i at time t. Denote the estimate with

p̂i,t. We assume that market participants form a prediction D̂i,t for Di,t using a simple

Bayes classifier:

Set D̂i,t = 0 if p̂i,t ≤ p̄ and D̂i,t = 1 if p̂i,t > p̄, (6)

where p̄ is a threshold probability.5 We define the set of standards with D̂i,t = 0, Di,t = 1

to be the Non-Anticipated standards (NA).

This definition of NA-standards has two advantages. First, the actual implementation

is straightforward. The researcher can use either standard econometric classification

approaches such as logit or Machine Learning techniques. We discuss the empirical im-

plementation in subsection 3.3 below. Second, this definition of a missclassified standard

5 The standard Bayes classifier uses p̄ = 0.5.
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is closely related to the microeconomic discussion from the previous section. Market par-

ticipants are ”surprised” by the standard, in the sense, that prior to the standard they

behave as if no standard will be released.

In a second step, we predict the outcome variable for all standards in the NA group

using only pre-treatment (i.e. pre-standard) characteristics, including pre-treatment

outcomes. This step and the following step are borrowed from the paper by Burlig et al.

[2017]. Denote the predicted outcome for technology i and period t by Ŷi,t(0). The mo-

tivation for this step is that for the NA-set of standards, the history (Yi,l, Xi,l)l≤t− does

not contain anticipatory effects and can be used to construct an unbiased prediction for

the counterfactual non-treatment outcome. The notation of the prediction reflects this

assumption by including an indicator for the potential outcome.

In a final third step, each outcome in the NA-group is compared to its predicted coun-

terfactual. The resulting estimator is defined as

β̂T = ̂E[Yi,t(1)− Yi,t(0) | NA] =| NA |−1
∑
i,t

(Yi,t − Ŷi,t(0)), (7)

where | NA | is the number of observations in the NA group.

Before we discuss the actual implementation of steps 1-3, we briefly discuss the main

underlying assumptions through a comparison of the estimator to the standard match-

ing on the propensity score. Both, equation (??) and the matching estimator rely on

estimating the propensity score. However, the matching estimator crucially relies on

a common support assumption, which ensures finding similar treated and non-treated

units. Our approach, on the contrary, builds for each unit in the NA group its own coun-

terfactual prediction. The two crucial assumptions behind our estimation approach are

(i) that the information available to the econometrician is sufficient to identify the NA

group and (ii) the counterfactual predictions for this group are unbiased. Assumption

(i) is similar in spirit to the CIA assumption invoked by the matching estimator. It is a

non-testable assumption. Assumption (ii) can be defended in a way similar to defending

the parallel trend assumption used in a DID estimator: by predicting pre-treatment

outcomes based on their histories

Predictions might not follow the exact same pre-treatment path as actual outcomes,

but follow a parallel trend. In order to take this into account, the prediction error on
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pre-treatment innovation can be subtracted:

β̂TD = ̂E[Yi,t(1)− Yi,t(0) | NA]− ̂E[Yi,t−ε(1)− Yi,t−ε(0) | NA] , (8)

where t− ε denotes some pre-treatment period.

Although our estimation method does not depend on the selection of an untreated control

group, i.e. a comparable sample without standardization, we follow Burlig et al. [2017]

in randomly selecting untreated observations. Untreated means that no standard has

been released, but also that no standard was predicted by the model. Yet, the timing

of a standard event cannot be defined for untreated units. Burlig et al. [2017] propose

a solution that consists of randomly assigning a treatment date to those units. We

decided to repeat the random selection of untreated years 100 times and use average

counterfactual outcomes in order to avoid that the estimated effects are due to the

specific random sample. The comparison with this control group allows us to control for

global trends and shocks that could lead to prediction errors in the whole sample. Just

as in equations (7) and (8), we can calculate β̂U and β̂UD for this control group. We

obtain two additional measures of the treatment effect that account for general trends

across country-technology pairs, the difference-in-differences estimator

β̂DD = β̂T − β̂U (9)

and the triple difference estimator

β̂3D = β̂TD − β̂UD . (10)

3.3 Empirical implementation

For the first step, we use a neural network with one hidden layer in order to predict the

occurrence of a standard in technology category i at time t in a given country. It has

been shown that in many cases one hidden layer is sufficient for an accurate prediction

due to the universal approximation theorem that states that any continuous function

can be approximated using a feed-forward neural network with a single hidden layer and

a finite number of neurons under mild assumptions on the activation function. Neural

networks have been used increasingly for classification problems. One advantage of neu-

ral networks is that they allow for complex non-linear relationships between the input
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variables and the output without imposing a specific functional form ex-ante. The neu-

ral network implicitly selects the most useful variables for prediction among the input

variables by allocating weights to each variable in the input layer. Furthermore, each

neuron in the hidden layer obtains also a weight which can introduce non-linearity in

the prediction model. There is a trade-off between the number of neurons in the hidden

layer and the calculation time until convergence. We vary the number of neurons in the

hidden layer in order to evaluate the sensitivity of our prediction results with respect to

the number of neurons. The model issues a prediction value between zero and one which

can be understood as the probability of a standardization event to occur in t. Prediction

accuracy is defined as the ratio between correctly predicted realization to the number of

realizations. Correctly predicted events include true positives, i.e. years with a standard

event that have been predicted correctly, and true negatives, i.e. years without a stan-

dard event which have been predicted as zeros. False positives and negatives represent

false predictions. In order to decide whether the prediction of a standard event is set to

zero or one, we have to decide on the threshold p̄. We choose the threshold that leads to

the highest prediction accuracy as a baseline and conduct a sensitivity analysis relative

to the choice of the threshold. In particular, we compare our results with a the ones of

a very low threshold which we arbitrarily set to 10%. With a very low threshold NA-

standards are considered extremely unlikely by the prediction model and can therefore

be considered more confidently as actual shocks to the market.

In the second step, we use random forests in order to construct counterfactual inno-

vation paths. Random forests are increasingly popular methods for both, classification

and regression problems. They combine a multitude of decision trees in order to improve

out-of-sample predictions. Decision trees are prone to overfitting, i.e. to match training

samples to closely and can therefore lead to poor out-of-sample predictions. In other

words, they lead to low-bias, but high-variance predictions. Random forests reduce vari-

ance by randomly selecting a subset of input variables for each tree (therefore reducing

the risk of growing too strongly correlated decision trees) and averaging the predictions

of the different trees. In our model, we set the number of decision trees to 100. Our ran-

dom forest uses a bagging algorithm for model averaging, i.e. the algorithm generates a

number random subsamples with replacement and averages prediction output over these

samples. Decision trees are grown deep, i.e. potentially fit the data in the respective

subsample very well. The reduction in variance is achieved through bagging and the

random selection of input variables in each decision tree.
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4 Results

4.1 Standard prediction

We randomly select 20 percent of our data as the training sample and 80 percent as the

validation sample. Standardization events are predicted one to five years ahead. The

dataset consists of a panel of 253 technology groups and 27 countries between 1995 and

2015 and contains 143,451 observations.

Figure 3 shows the prediction accuracy for the different number of neurons in the hidden

layer of the neural network (predictions from period -1). A higher number of neurons in

the hidden layer leads to a better prediction accuracy. This is the case for all prediction

leads. This reflects the complex non-linear relationship between the input variables and

the output. In figure 5 we show the prediction accuracy by prediction lead, i.e. for how

many years ahead the standardization event has been predicted. The maximum accuracy

is 94.4% (the values of figure 5 are presented in table 17 in the appendix). Here, we

use predictions made with 15 neurons in the hidden layer, since they lead to the highest

prediction accuracy. The prediction accuracy is very similar for the different leads, but

becomes slightly better closer to the standardization event. The prediction accuracy is

generally the highest at a prediction threshold of 0.5-0.55. The predictions are better

than a naive predictor of setting predictions to 0 for all periods which would lead to a

prediction accuracy of 90.8% because of the scarcity of standardization events. Using a

prediction lead of 1 year, 15 neurons in the hidden layer and a threshold of 0.5, we are

able to correctly predict 98.1% of all non-standardization events (true negatives), and

57.9% of standardization events (true positives). Compared to the naive predictor, we

loose 1.5% of possible true negative predictions, but are therefore able to predict more

than half of the standardization events correctly.
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Figure 3: Accuracy of standard prediction by number of neurons

Figure 4: Full sample

Note: Neural network with 1 hidden layer for prediction. Standard prediction is set to 1 if the prediction

value of the neural network is larger than threshold. Predictions 1 year ahead, i.e. using inputs from

t− 1. Accuracy = true predictions/number of observations.
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Figure 5: Accuracy of standard prediction by prediction lead

Note: Neural network with 1 hidden layer with 15 neurons for prediction. Standard prediction is set to 1

if the prediction value of the neural network is larger than threshold. Predictions x=1,...,5 years ahead,

i.e. using inputs from t− x. Accuracy = true predictions/number of observations.

Table 4 reports the prediction accuracy as well as the share of true positives and negatives

with a decision threshold of 0.5. More than half of all standards are predicted accurately.

As shown in table 18 in the appendix, the prediction accuracy is very similar for the

training and test samples. Our neural network outperforms predictions obtained by

simple regression, probit or logit models. The results are presented in tables 19 to

21 in the appendix. Figure 10 plots the prediction accuracy of the logit model for the

different prediction leads. The prediction accuracy and the number of correctly predicted

negatives are only slightly lower, but all models do worse in predicting standard events

(true positives) then the neural network. The share of correctly predicted positives

ranges from 29 to 43 percent depending on the model, while it ranges from 55 to 58

percent for the neural network.
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Table 4: Accuracy of standard prediction by treatment outcome

Full sample

Prediction lead Accuracy True positives True negatives Number of obs.

1 year .944 .579 .982 136620

2 years .944 .569 .982 129789

3 years .943 .562 .983 122958

4 years .941 .562 .982 116127

5 years .941 .548 .983 109296

Note: Neural network with 1 hidden layer with 15 neurons for prediction. Standard prediction

is set to 1 if the prediction value of the neural network is larger than threshold. Predictions

x=1,...,5 years ahead, i.e. using inputs from t − x. Accuracy = true predictions/number of

observations.

Prediction accuracy is maximal at a threshold of 0.5. However, the choice of the threshold

is arbitrary and implies an assumption about how market participants make predictions

about standard events. Prediction accuracy measures the total share of correct predic-

tions, i.e. gives the same weight to correct predictions of the occurrence and the absence

of standardization events. Risk-averse market participants who want to avoid investing

in the wrong technology might fear false positive predictions more than false negatives

and might, therefore, choose a higher threshold. On the other hand, our analysis is based

on the assumption that the selected standards are truly unpredictable by the market.

This might especially be the case for very unlikely standardization events, i.e. where the

predicted probability of a standard to occur is very low.

For these reasons, we conduct a sensitivity analysis when constructing the innovation

counterfactual with respect to the decision threshold above which a standardization

event is assumed. Figure 6 illustrates the prediction accuracy (share of correctly pre-

dicted events), as well as the percentage of correctly predicted positives and negatives by

decision threshold. The percentage of correct positive (negative) predictions decreases

(increases) mechanically with the threshold.
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Figure 6: Standard prediction by decision threshold

Note: Neural network with 1 hidden layer with 15 neurons for prediction. Standard prediction is set to

1 if the prediction value of the neural network is larger than threshold. Predictions 1 year ahead, i.e.

using inputs from t − 1. Accuracy = true predictions/number of observations. Well classified positives

= correctly predicted years with standardization event. Well classified negatives = correctly predicted

years without standardization event.

For the following analysis of the causal effect of standardization on innovation we use

standard predictions from the neural network with 15 neurons in the hidden layer which

led to the best prediction results.

4.2 Counterfactual innovation and the causal effect of standardization

on innovation

In this section, we present our findings on the effect of standardization on innovation.

We use patent application counts to proxy innovative activity and compare our find-

ings with the standards’ effect on forward citations to patents of a technology and the

share of a technology’s patent applications in the country’s total applications in order
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to measure different aspects of innovation. Patent counts measure the overall patenting

activity within a technology class. Forward citations are often used to measure patent

quality, since patents can be of very different quality and importance to an industry. The

technology’s share of patent applications refers to its importance in the national market

and shows whether innovation efforts are shifted towards or away from a standardized

technology.

We predict counterfactual innovation paths for five years before and after the treatment

period and compare them with actual innovation paths. We also test for differences and

parallel trends in pre-treatment counterfactual and actual innovation paths. Predictions

are made for false negatives and a control group that consists of average predictions

of 100 random untreated samples, i.e. true negatives (see section 3.2). We identify all

years with an unexpected standard, i.e. all years where no standard has been predicted,

but a standardization event occurred (false negatives), as our treatment group. We use

the same pre-treatment variables to create the counterfactual innovation path as have

been used for standard prediction. Since our prediction model was not able to predict

these standards, those variables do not contain information on the standard itself and

can therefore be used to create a counterfactual situation of innovation without stan-

dardization. Only pre-treatment (i.e. pre-standard) information is used, i.e. prediction

inputs from periods -1 to -5. Period 0 represents the year of the standardization event

for false negatives and the randomly selected pseudo-treatment period for the control

group. The results below use standard predictions one year ahead (i.e. standard pre-

dictions made with inputs from period -1). Results are similar for other prediction leads.

Figure 7 shows average actual and counterfactual patent application counts for the

thresholds 0.5 and 0.1. The latter represents a very low threshold, i.e. false negatives

include only very unlikely standards. The lower the threshold, the more unlikely have

been the unexpected standards, i.e. the bigger the surprise of a standardization event

to happen. The figure shows that pre-treatment patent applications follow a very simi-

lar path as the counterfactual predictions, while post-treatment counterfactuals deviate

from actual outcomes.
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Figure 7: Actual vs. counterfactual patent application counts

(a) Threshold = 0.1

(b) Threshold = 0.5

Note: Estimation of counterfactual patent counts using random forest with 100 decision trees. Period 0

= treatment or pseudo-treatment period. For false negatives, predictions are averaged over 100 random

control group draws.
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The figures suggest that patent applications are higher after an unexpected standard-

ization event than the would have been without the standard. For true negatives the

counterfactual patent application path seems to be slightly higher than the actual path

after the pseudo-treatment period. In tables 5 and 6 we calculate the different treat-

ment effects discussed in section 3.2. The treatment group (T) refers to all years with

false negative predictions, i.e. years with a NA-standard. The control group consists

of the randomly selected false negatives, i.e. years without standardization where no

standard has been predicted by the model (U). βT and βU are the simple differences

between actual and counterfactual patent application counts. βTD and βUD represent

the DID estimators within each group where pre-treatment outcomes are averaged over

the five years preceding the treatment period 0. βDD and β3D calculate the difference

in the post-treatment differences as well as the triple-differences estimator between false

and true negatives. The columns refer to the years after the treatment period. The

results show that patent applications are higher than they would have been without

standardization. However, for true negatives the treatment effects are negative, which

suggests that our prediction model does not perfectly predicted patent applications for

the control group. The difference in post-treatment differences and the triple-differences

estimators show that ignoring the prediction error in the control group would lead to an

underestimation of the positive effect of standardization on patent applications.
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Table 5: Treatment effects of standardization on patent ap-
plications (threshold 0.1)

Post-treatment period in years

1 2 3 4 5 Average

βT 30.74 79.29 14.49 65.18 188.99 75.74

βTD 31.55 80.1 15.3 65.99 189.8 76.55

βU -32.83 -47.14 -43.21 -56.19 -70.47 -49.97

βUD -18.5 -32.8 -28.88 -41.86 -56.13 -35.63

βDD 63.57 126.43 57.71 121.37 259.46 125.71

β3D 50.05 112.91 44.18 107.85 245.93 112.18

Note: Estimation of counterfactual patent application counts using

random forest with 100 decision trees. Treatment period = year of

standardization event for false negatives or pseudo-treatment period for

true negatives. For false negatives, predictions are averaged over 100

random control group draws. Prediction errors for pre-treatment periods

are averaged over the 5 years preceding the treatment period for βTD,

βUD and β3D. In column 6, post-treatment errors are averaged over 5

years following the treatment period.

Table 6: Treatment effects of standardization on patent ap-
plications (threshold 0.5)

Post-treatment period in years

1 2 3 4 5 Average

βT 49.96 34.39 36.96 92.82 143.45 71.52

βTD 32.79 17.22 19.8 75.66 126.29 54.35

βU -38.79 -42.82 -51.16 -62.43 -80.19 -55.08

βUD -19.79 -23.81 -32.15 -43.42 -61.18 -36.07

βDD 88.75 77.2 88.12 155.25 223.64 126.59

β3D 52.58 41.03 51.95 119.08 187.47 90.42

Note: Estimation of counterfactual patent application counts using

random forest with 100 decision trees. Treatment period = year of

standardization event for false negatives or pseudo-treatment period

for true negatives. For false negatives, predictions are averaged over

100 random control group draws. Prediction errors for pre-treatment

periods are averaged over the 5 years preceding the treatment period for

βTD, βUD and β3D. In column 6, post-treatment errors are averaged

over 5 years following the treatment period.29



The above calculated treatment effects do not tell us anything about the significance of

the effects. Furthermore, the DID estimators rely on a crucial assumption, the assump-

tion of pre-treatment parallel trends. In order to test this, we estimate a DID regression

model where we regress patent applications on the period, the treatment and their inter-

actions (see Pischke [2005]). The periods refer to the years around the standardization

event or the pseudo-treatment period, where 0 represents the treatment period. We use

the year before treatment (period -1) as our reference period. The treatment indicator is

1 for actual realizations of patent applications and 0 for their predicted counterfactuals.

This setting allows us to test for two things. First, we are able to test whether pre-

treatment counterfactual paths are parallel to actual paths. If pre-treatment trends are

parallel, the interaction terms between the treatment indicator and the pre-treatment

periods should be insignificant, i.e. the difference between actual and counterfactual out-

comes does not vary over time before treatment, or in other words, is not significantly

different from the reference period. Second, we can test whether there is a significant

difference in trends after treatment, i.e. whether the DID estimator is significant. Since

we have several post-treatment periods, we are also able to evaluate how the effect of

standardization on patent applications evolves over time. Note that the coefficients of

the interaction terms correspond to β̂TD and β̂UD (see section 3.2).

Tables 7 and 8 present the regression results for true and false negatives. Pre-treatment

trends are parallel for false negatives, but not for true negatives. For false negatives, the

DID estimator is significant and positive in period 5. This means that patent applica-

tions are higher five years after the unexpected standardization event than they would

have been had no standard occurred. Depending on the threshold, they exceed the coun-

terfactual by 213 or 132 patent applications. The DID estimator for false negatives is

valid since pre-treatment trends are parallel. However, it cannot account for eventual

global prediction errors that affect our whole data sample, i.e. also true negative predic-

tions. A prediction model that only excludes information of the standardization event

itself should show parallel trends before and after treatment for true negatives. Since

counterfactual predictions deviate from actual patent applications for true negatives, we

have to account for this when calculating the effect of standardization on patent applica-

tions. Since pre-treatment trends are not parallel for true negatives, the DID estimator

is not correct for this sample. However, for our triple-difference estimator it is important

that the trends in the difference between actual and counterfactual patent applications

of false and true negatives are parallel before treatment.
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Table 7: DID estimation for patent applications within groups
(threshold of 0.1)

False negatives True negatives

T -24 -24 -37∗∗∗ -37∗∗∗

Period -5 -616∗∗∗ 870 -881∗∗∗ 53∗∗∗

Period -4 -406∗∗∗ 612 -577∗∗∗ 30∗∗∗

Period -3 -210∗ 323 -292∗∗∗ 10

Period -2 -58 50 -56∗∗∗ 3

Period 1 178 335 -192∗∗∗ -63∗∗∗

Period 2 938∗∗ 9 -157∗∗∗ -68∗∗∗

Period 3 770 -173 -127∗∗∗ -80∗∗∗

Period 4 591 -303 -114∗∗∗ -77∗∗∗

Period 5 575 -355 -126∗∗∗ -78∗∗∗

T × Period -5 22 22 19∗∗∗ 19∗∗∗

T × Period -4 43 43 27∗∗∗ 27∗∗∗

T × Period -3 29 29 36∗∗∗ 36∗∗∗

T × Period -2 20 20 30∗∗∗ 30∗∗∗

T × Period 1 54 54 4 4

T × Period 2 103 103 -10∗ -10∗

T × Period 3 38 38 -6 -6

T × Period 4 89 89 -19∗∗∗ -19∗∗∗

T × Period 5 213∗∗ 213∗∗ -34∗∗∗ -34∗∗∗

Year dummies No Yes No Yes

Country dummies No Yes No Yes

Technology dummies No Yes No Yes

Observations 9906 9906 1328326 1328326

Standard errors are clustered at the country - technology level

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: Linear least-squares regression with patent applications (flow) as

depend variable. T = 1 if actual, 0 if counterfactual outcome. Period 0

= treatment or pseudo-treatment period. False negatives = unpredicted

standardization events. True negatives = correctly predicted years with-

out standardization. For false negatives, predictions are averaged over 100

random control group draws. Standard prediction 1 year ahead.
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Table 8: DID estimation for patent applications within groups
(threshold of 0.5)

False negatives True negatives

T 12 12 -44∗∗∗ -44∗∗∗

Period -5 -787∗∗∗ 756 -854∗∗∗ 41∗∗∗

Period -4 -530∗∗∗ 504 -557∗∗∗ 21∗∗∗

Period -3 -281∗∗∗ 287 -276∗∗∗ 4

Period -2 -69 73 -45∗∗∗ 0

Period 1 56 230 -222∗∗∗ -61∗∗∗

Period 2 583∗ -324 -193∗∗∗ -68∗∗∗

Period 3 332 -506 -157∗∗∗ -68∗∗∗

Period 4 189 -470 -152∗∗∗ -68∗∗∗

Period 5 160 -605 -159∗∗∗ -61∗∗∗

T × Period -5 1 1 25∗∗∗ 25∗∗∗

T × Period -4 14 14 31∗∗∗ 31∗∗∗

T × Period -3 8 8 38∗∗∗ 38∗∗∗

T × Period -2 5 5 31∗∗∗ 31∗∗∗

T × Period 1 38 38 5 5

T × Period 2 23 23 1 1

T × Period 3 25 25 -7 -7

T × Period 4 81 81 -19∗∗∗ -19∗∗∗

T × Period 5 132∗∗ 132∗∗ -36∗∗∗ -36∗∗∗

Year dummies No Yes No Yes

Country dummies No Yes No Yes

Technology dummies No Yes No Yes

Observations 15042 15042 1410334 1410334

Standard errors are clustered at the country - technology level

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: Linear least-squares regression with patent applications (flow) as

depend variable. T = 1 if actual, 0 if counterfactual outcome. Period 0

= treatment or pseudo-treatment period. False negatives = unpredicted

standardization events. True negatives = correctly predicted years

without standardization. For false negatives, predictions are averaged

over 100 random control group draws. Standard prediction 1 year ahead.
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In tables 9 and 10 we regress the difference between actual and counterfactual patent

applications on the period, an indicator variable which is 1 for false negatives and 0

for true negatives, and their interactions. The differences are parallel for pre-treatment

periods since their interaction terms with the false negatives indicator (FN) are insignif-

icant. The assumption of pre-treatment parallel trends between false and true negatives

holds. We find a positive and significant difference in the fifth post-treatment period, i.e.

the difference between actual and counterfactual patent applications in period 5 experi-

enced a significantly higher increase with respect to the pre-treatment reference period

for false negatives than for true negatives. Depending on the threshold, this difference

amounts to 158 or 113 more patent applications when controlling for year, country and

technology fixed effects. This confirms our finding using only within-group treatment

effects for false negatives.
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Table 9: DID estimation for treatment effects on patent
applications across groups (threshold of 0.1)

(1) (2)

FN 13 76

Period -5 19∗∗∗ 178∗∗∗

Period -4 27∗∗∗ 142∗∗∗

Period -3 36∗∗∗ 111∗∗∗

Period -2 30∗∗∗ 69∗∗∗

Period 1 4 -21∗∗∗

Period 2 -10∗ -13∗∗

Period 3 -6 9∗

Period 4 -19∗∗∗ 16∗∗∗

Period 5 -34∗∗∗ 20∗∗∗

FN × Period -5 2 -39

FN × Period -4 16 -16

FN × Period -3 -7 -39

FN × Period -2 -10 -38

FN × Period 1 50 44

FN × Period 2 113 45

FN × Period 3 44 -12

FN × Period 4 108 49

FN × Period 5 246∗∗∗ 158∗

Year dummies No Yes

Country dummies No Yes

Technology dummies No Yes

Observations 669116 669116

Standard errors are clustered at the country - technology level

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: Linear least-squares regression with the difference between

actual and counterfactual patent applications as depend variable.

FN = 1 if false negatives, 0 if true negatives. Period 0 = treat-

ment or pseudo-treatment period. False negatives = unpredicted

standardization events. True negatives = correctly predicted

years without standardization. For false negatives, predictions

are averaged over 100 random control group draws. Standard

prediction 1 year ahead. 34



Table 10: DID estimation for treatment effects on patent
applications across groups (threshold of 0.5)

(1) (2)

FN 56∗ 62∗

Period -5 25∗∗∗ 170∗∗∗

Period -4 31∗∗∗ 135∗∗∗

Period -3 38∗∗∗ 105∗∗∗

Period -2 31∗∗∗ 66∗∗∗

Period 1 5 -18∗∗∗

Period 2 1 -4

Period 3 -7 5

Period 4 -19∗∗∗ 11∗∗

Period 5 -36∗∗∗ 9

FN × Period -5 -24 -59∗∗

FN × Period -4 -17 -43

FN × Period -3 -30 -56∗∗

FN × Period -2 -26 -46∗

FN × Period 1 33 34

FN × Period 2 22 -23

FN × Period 3 33 -4

FN × Period 4 100 62

FN × Period 5 168∗∗∗ 113∗

Year dummies No Yes

Country dummies No Yes

Technology dummies No Yes

Observations 712688 712688

Standard errors are clustered at the country - technology level

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: Linear least-squares regression with the difference between

actual and counterfactual patent applications as depend variable.

FN = 1 if false negatives, 0 if true negatives. Period 0 = treat-

ment or pseudo-treatment period. False negatives = unpredicted

standardization events. True negatives = correctly predicted

years without standardization. For false negatives, predictions

are averaged over 100 random control group draws. Standard

prediction 1 year ahead.
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In the following, we calculate treatment effects for different innovation measures and

different country groups.

Patent quality

Patents can be of very different quality and importance to the industry. Therefore,

patent counts are often adjusted for quality. The literature has identified different mea-

sures for patent quality, each with their advantages and inconveniences. One of the most

used ones is the number citations towards the patents, so-called forward citations. This

measure captures the use of a patent for other inventions and can, therefore, proxy the

patent’s technological importance. Since patents are of different age, it is common to use

only forward citations within the first years of the patent’s life. Here, we use the average

number of forward citations a patent application of a given technology has received in

the first 5 years after the application filing year.

Table 11: Treatment effects of standardization on av-
erage 5-years citation counts

Post-treatment period in years

1 2 3 4 5 Average

βT -1.56 -1.38 -2 -2.02 -1.64 -1.72

βU -.11 .21 -.13 -.12 -.39 -.11

βDD -1.45 -1.59 -1.87 -1.9 -1.25 -1.61

βTD 0 .18 -.43 -.46 -.08 -.16

βUD 0 .32 -.02 -.01 -.29 0

β3D 0 -.14 -.41 -.44 .21 -.16

Note: Estimation of the counterfactual using random forest with

100 decision trees. Treatment period = year of standardization

event for false negatives or pseudo-treatment period for true

negatives. For false negatives, predictions are averaged over 100

random control group draws. Prediction errors for pre-treatment

periods are averaged over the 5 years preceding the treatment

period for βTD, βUD and β3D. In column 6, post-treatment

errors are averaged over 5 years following the treatment period.

Table 11 shows that the effect of standardization on early patent life citations is very
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small, almost zero. This suggests that standardization leads to an increase in patent

applications within the technology area of the standard, but not to an increase in the

average number of citations to the technology class, thus, the average quality of the

patents. One possible explanation could be that standard implementation and diffusion

takes time and related patents might gain importance later in their life.

Technology selection

In section 2.1 we mentioned the technology selection function of standards. Here, we

make a first attempt to test this hypothesis. To do so, we use the share of a technology’s

patent applications in the total number of patent applications in a given country and year

as output variable of our random forest model. This measures the degree of patenting

within a technology compared to all other technologies and proxies its relative R&D

intensity.

Table 12: Treatment effects of standardization on the share
of standard related patent counts in total patent counts

Post-treatment period in years

1 2 3 4 5 Average

βT -.0065 -.0114 -.0093 -.0111 -.0159 -.0108

βU .0022 .0028 .0013 .0009 .0028 .002

βDD -.0088 -.0142 -.0106 -.012 -.0187 -.0129

βTD .0044 -.0004 .0016 -.0002 -.0049 .0001

βUD .0004 .001 -.0005 -.0009 .001 .0002

β3D .004 -.0015 .0021 .0007 -.0059 -.0001

Note: Estimation of the counterfactual using random forest with 100

decision trees. Treatment period = year of standardization event for

false negatives or pseudo-treatment period for true negatives. For false

negatives, predictions are averaged over 100 random control group

draws. Prediction errors for pre-treatment periods are averaged over

the 5 years preceding the treatment period for βTD, βUD and β3D. In

column 6, post-treatment errors are averaged over 5 years following the

treatment period.

The variable ranges from 0 to 100, thus, represents percentage points. Table 12 shows an

effect very close to zero, hence, does not suggest that standardization leads to technol-
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ogy selection in terms of patenting concentration within the standard’s technology area.

However, our measure of technology selection refers only to the economy as a whole and

cannot reveal selection mechanisms within the technology fields. It also does not take

into account standardization patterns in other technology fields. Hence, the technology

selection theory of standards demands further research.

Country income groups

Tables 13 and 14 show the treatment effects on patent applications for high income and

low income countries separately. The average positive effects found above seem to be

driven by the high income countries, while treatment effects are generally negative for

low income countries. Standards frequently create tensions between the developed and

the developing world due to differences in adoption costs and an unequal distribution of

intellectual property rights (Gibson [2007], Ernst [2011]). Low income countries might

benefit less from standardization due to their second mover disadvantage on global mar-

kets and intellectual property right distribution. It is therefore possible that firms in low

income countries try to innovate around standardized technologies.
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Table 13: Treatment effects of standardization on patent ap-
plications for high income countries (threshold 0.5)

Post-treatment period in years

1 2 3 4 5 Average

βT 66.4 53.41 60.24 120.38 174.54 94.99

βTD 43.93 30.95 37.78 97.92 152.08 72.53

βU -45.87 -51.7 -65.64 -77.71 -98.17 -67.82

βUD -23.28 -29.11 -43.04 -55.11 -75.58 -45.22

βDD 112.27 105.11 125.88 198.09 272.71 162.81

β3D 67.21 60.06 80.82 153.03 227.65 117.76

Note: Estimation of the counterfactual using random forest with 100

decision trees. Treatment period = year of standardization event for

false negatives or pseudo-treatment period for true negatives. For false

negatives, predictions are averaged over 100 random control group draws.

Prediction errors for pre-treatment periods are averaged over the 5 years

preceding the treatment period for βTD, βUD and β3D. In column 6,

post-treatment errors are averaged over 5 years following the treatment

period. Income groups according to the WDI database.
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Table 14: Treatment effects of standardization on patent ap-
plications for low income countries (threshold 0.5)

Post-treatment period in years

1 2 3 4 5 Average

βT -20.59 -48.44 -63.97 -25.07 2.23 -31.17

βTD -14.57 -42.43 -57.96 -19.05 8.24 -25.15

βU -16.85 -15.27 -6.27 -15.07 -24.45 -15.58

βUD -8.96 -7.39 1.61 -7.19 -16.57 -7.7

βDD -3.74 -33.16 -57.7 -10 26.68 -15.58

β3D -5.61 -35.03 -59.57 -11.86 24.81 -17.45

Note: Estimation of the counterfactual using random forest with 100

decision trees. Treatment period = year of standardization event for

false negatives or pseudo-treatment period for true negatives. For false

negatives, predictions are averaged over 100 random control group

draws. Prediction errors for pre-treatment periods are averaged over

the 5 years preceding the treatment period for βTD, βUD and β3D. In

column 6, post-treatment errors are averaged over 5 years following the

treatment period. Income groups according to the WDI database.
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5 Conclusion

In this paper, we investigated the causal effect of standardization on innovation. This is

a non-trivial task due to the complex causal relationship between standardization and

innovation. In order to solve this problem, we developed a novel methodology which

accounts for anticipatory effects of standardization. First, we predict standards using a

feed-forward neural network. Subsequently, we use pre-standard data in a random forest

to create a counterfactual innovation path for non-anticipated standards. For this set

of standards, we are able to estimate the causal effect of standardization on innovation,

since pre-standard data do not contain information on the standard itself and are there-

fore not able to predict the standard.

We estimate the effect of standardization for our set of non-anticipated standards on the

number of patent applications within a technology field, the average number of 5-years

citations to patents from the technology and on the technology’s share in total patent

applications of a country. We find a positive effect of standardization on patent appli-

cations which is significant five years after standardization. We find no effect on patent

citations and application shares.

This paper contributes to the literature by estimating the causal effect of standardiza-

tion on innovation. Former studies have struggled to identify the causal effect properly

due to the reverse causality relationship between standardization and innovation. We

are able to identify this effect by excluding anticipation of standardization. We also

provide a novel identification strategy which may be used in other settings. Finally, we

contribute to the literature on technology shocks by predicting standardization events.

Further research is necessary on the effect of standardization on the quality and distri-

bution of innovation. An additional topic is the effect of standard adoption rather than

standard development on innovation. Our current work focuses on providing empirical

evidence for the unpredictability of our non-anticipated standards which represents the

crucial assumption of our identification strategy.
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A Appendix

A.1 Figures

Figure 8: Total number of standards over years in Perinorm between 1995 and 2015
1,208,663 standards
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Figure 9: Total number of standards over countries in Perinorm between 1995 and 2015
1,208,663 standards

A.2 Tables
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Table 15: Descriptive statistics by country

Mean

Total
number
of stan-
dards

Exports
in tech.
(mio.
USD)

Imports
in tech.
(mio.
USD)

Patent
stock
in tech.
(thous.)

Total
patent
stock
(mio.)

GDP per
capita
(thous.
USD)

Total
popu-
lation
(mio.)

R&D
expendi-
ture (%
GDP)

Mean
tariff rate

Natural
resource
rent (%
GDP)

No. of
patent
appli-
cations
in tech.
(thous.)

Total no.
of patent
appli-
cations
(mio.)

Austria 748 104 96 6 2 44 8 .023 .024 .0017 1 .3644
Belgium 352 204 192 8 2 42 11 .02 .024 .0002 1 .3514
Brazil 222 65 106 1 .2067 10 187 .0124 .1407 .0342 .2373 .0443
Canada 196 220 272 19 5 45 32 .0187 .0467 .0332 4 1
China 532 1107 769 15 4 3 1298 .0128 .1166 .0388 4 .9048
Czech Republic 571 80 72 .5113 .0657 17 10 .0132 .024 .0066 .1095 .0144
Denmark 622 56 56 7 2 56 5 .0254 .024 .0114 1 .3274
Finland 308 74 50 11 3 43 5 .0315 .024 .0049 2 .4875
France 613 408 408 50 15 39 63 .0214 .024 .0005 10 3
Germany 921 870 657 116 39 40 82 .025 .024 .0012 22 8
Italy 315 300 239 17 6 36 58 .0121 .024 .001 3 1
Japan 384 604 359 251 74 44 127 .0313 .0283 .0002 50 15
Jordan 58 2 8 .0274 .0003 4 6 .0118 .1195 .0107 .0061 .0001
Korea Rep. 344 382 237 55 14 19 48 .028 .0851 .0002 12 3
Lithuania 499 9 9 .0254 .0005 10 3 .0079 .024 .007 .0066 .0002
Netherlands 848 307 294 27 7 47 16 .0188 .024 .0065 5 1
Norway 323 39 46 3 .723 85 5 .0188 .0134 .0827 .6101 .1419
Poland 594 84 95 .4497 .0602 10 38 .0072 .024 .0114 .1048 .0152
Russian Federation 379 58 120 1 .2181 9 145 .0109 .1004 .1451 .2728 .0467
Slovak Republic 502 30 33 .1218 .0053 14 5 .0073 .024 .0034 .0242 .0011
South Africa 286 23 47 .9698 .159 7 47 .0062 .0824 .0539 .1864 .0303
Spain 520 131 188 5 1 29 43 .0116 .024 .0006 .9834 .2586
Sweden 368 133 92 20 5 48 9 .0304 .024 .0053 4 1
Switzerland 431 142 112 28 9 70 8 .0273 .0114 .0002 6 2
Turkey 565 41 82 .4077 .0483 9 68 .0069 .043 .0038 .0982 .0122
United Kingdom 891 308 390 37 11 37 61 .0174 .024 .0078 7 2
United States 852 1039 1284 348 101 47 295 .0258 .0332 .0099 71 21
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Table 16: Descriptive statistics by country

Mean

Number
of patent
citations

C num-
ber of
patent
citations

A num-
ber of
5 years
citations

Average
operating
revenue
per firm
in tech.
(thous.)

Average
number
of em-
ployees
per firm
in tech.
(thous.)

Number
of firms
in tech.
(thous.)

Share of
biggest
firm’s
operating
revenue

Share of
biggest
firm’s
number
of em-
ployees

Country’s
share in
global
operating
revenue
in tech.

Country’s
share in
global
number
of em-
ployees
in tech.

Tech.’s
share
in total
country’s
operating
revenue

Tech.’s
share
in total
country’s
number
of em-
ployees

Austria .2916 2 5 725 2 .0066 .2912 .2767 .0011 .001 .0003 .0003
Belgium .7944 5 13 108 .066 2 .2465 .2178 .0115 .0058 .0003 .0003
Brazil .0634 .2967 .8261 0 0 0 0 0 0 0 0 0
Canada 2 11 29 0 0 0 0 0 0 0 0 0
China .767 4 13 293 2 .4902 .1496 .0951 .0283 .0563 .0002 .0002
Czech Republic .04 .1496 .8394 14 .0903 2 .1708 .153 .0097 .0206 .0003 .0003
Denmark .662 4 3 401 1 .0101 .196 .1958 .0009 .0009 .0002 .0002
Finland .4171 3 6 103 .2311 .3999 .4497 .4022 .0111 .008 .0003 .0003
France 2 17 30 441 2 .8188 .2776 .2806 .0581 .0512 .0003 .0003
Germany 5 31 62 389 .5747 2 .2295 .2185 .1661 .117 .0003 .0003
Italy 1 10 17 41 .1098 6 .2034 .2089 .0598 .0351 .0003 .0003
Japan 5 49 67 2180 5 .3844 .4021 .3242 .1957 .1257 .0003 .0003
Jordan 76 .3705 .0012 .3649 .3404 0 0 .0002 .0002
Korea Rep. 1 7 18 19 .0556 2 .1846 .137 .0104 .0077 .0003 .0003
Lithuania 3 .0326 .6434 .2839 .2351 .0002 .0009 .0004 .0003
Netherlands 1 8 15 937 .2947 .8629 .4038 .3727 .0225 .0221 .0003 .0003
Norway .1673 .7558 2 745 2 .01 .1959 .1993 .002 .0016 .0001 .0001
Poland .0124 .0796 0 44 .2372 .0352 .4889 .2966 .0013 .0027 .0003 .0003
Russian Federation .0582 .1942 1 9 .1683 6 .2259 .1852 .0133 .0601 .0003 .0003
Slovak Republic .0116 .1124 .1357 49 .1237 .8693 .3771 .2435 .0055 .005 .0003 .0003
South Africa .0951 .6504 1 822 4 .0034 .3536 .2758 .0006 .001 .0002 .0002
Spain .386 2 6 15 .0387 10 .1292 .0828 .0699 .0481 .0003 .0003
Sweden .8089 4 13 20 .054 3 .2452 .2198 .0153 .013 .0003 .0003
Switzerland 2 12 19 357 .8211 3 .2258 .2525 .0141 .0119 .0003 .0003
Turkey .0302 .1592 .6347 1155 4 .0018 .1398 .1583 .0005 .0005 .0002 .0002
United Kingdom 4 21 45 229 .4708 1 .2663 .1754 .0704 .0466 .0003 .0003
United States 145 675 1900 1091 3 .1103 .2499 .211 .1267 .0804 .0003 .0003
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Table 17: Prediction accuracy by lead

Prediction lead
Threshold 1 year 2 years 3 years 4 years 5 years

0.05 .838 .829 .824 .819 .817
0.1 .885 .879 .88 .875 .875
0.15 .908 .903 .904 .903 .898
0.2 .921 .918 .918 .917 .915
0.25 .93 .929 .928 .927 .925
0.3 .935 .935 .934 .932 .931
0.35 .94 .939 .938 .937 .936
0.4 .942 .941 .94 .94 .939
0.45 .944 .943 .942 .941 .94
0.5 .944 .944 .943 .941 .941
0.55 .944 .944 .943 .941 .941
0.6 .943 .943 .942 .94 .94
0.65 .942 .942 .941 .939 .939
0.7 .94 .941 .939 .937 .937
0.75 .938 .937 .937 .935 .935
0.8 .934 .934 .933 .932 .932
0.85 .93 .93 .93 .928 .929
0.9 .926 .926 .925 .923 .924
0.95 .919 .919 .917 .916 .917

Number of observations 136,620 129,789 122,958 116,127 109,296

Note: Neural network with 1 hidden layer and 15 nodes for prediction. Stan-
dard prediction is set to 1 if the prediction value of the neural network is
larger than threshold. Predictions are made 1 to 5 years ahead, i.e. inputs
in period t are used for predictions in t + x, where x ∈ {1, ..., 5}. Accuracy
= true predictions/number of observations.
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Table 18: Accuracy of standard prediction for training and test samples

Full sample
Prediction lead Training sample Number of obs. Test sample Number of obs.

1 year .944 114761 .946 21859
2 years .943 107930 .945 21859
3 years .942 101099 .946 21859
4 years .941 94268 .942 21859
5 years .942 87437 .935 21859

Note: Neural network with 1 hidden layer with 15 neurons for prediction. Standard prediction is
set to 1 if the prediction value of the neural network is larger than threshold. Predictions x=1,...,5
years ahead, i.e. using inputs from t − x. Accuracy = true predictions/number of observations. The
restricted sample includes firm data from Orbis for prediction. Training/test sample contains 80/20
percent of the observations.

Table 19: Prediction accuracy of simple regression

Prediction lead Accuracy True positives True negatives Number of obs.

1 year .9276 .2927 .9927 136620
2 years .9271 .2963 .9926 129789
3 years .9266 .2999 .9923 122958
4 years .926 .3042 .9919 116127
5 years .9256 .3104 .9915 109296

Note: Standard prediction using a linear prediction model. Prediction of a standard event for
prediction values larger than 0.5.

Table 20: Prediction accuracy of probit

Prediction lead Accuracy True positives True negatives Number of obs.

1 year .9305 .4237 .9825 136620
2 years .9299 .4247 .9824 129789
3 years .9292 .4251 .982 122958
4 years .9282 .4251 .9815 116127
5 years .9272 .4253 .981 109296

Note: Standard prediction using a probit model. Prediction of a standard event for prediction
values larger than 0.5.
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Table 21: Prediction accuracy of logit

Prediction lead Accuracy True positives True negatives Number of obs.

1 year .931 .4344 .982 136620
2 years .9301 .4328 .9817 129789
3 years .9295 .4353 .9813 122958
4 years .9284 .4339 .9808 116127
5 years .9277 .4361 .9804 109296

** Prediction of a standard event for prediction values larger than 0.5

Note: Standard prediction using a logit model. Prediction of a standard event for prediction
values larger than 0.5.

Figure 10: Prediction accuracy of logit
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